Skip to main content

Measuring Natural Selection

  • Protocol
  • First Online:
Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1525))

Abstract

In this chapter, I review the basic algorithm underlying the CODEML model implemented in the software package PAML. This is intended as a companion to the software’s manual, and a primer to the extensive literature available on CODEML. At the end of this chapter, I hope that you will be able to understand enough of how CODEML operates to plan your own analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darwin C, Wallace A (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J Proc Linn Soc 3:45–62

    Article  Google Scholar 

  2. Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  3. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313:224–226

    Article  CAS  PubMed  Google Scholar 

  4. Luikart G, England PR, Tallmon DA et al (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  5. Beutler B, Jiang Z, Georgel P et al (2006) Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Ann Rev Immunol 24:353–389

    Article  CAS  Google Scholar 

  6. Kimura M (1968) Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet Res 11:247–269

    Article  CAS  PubMed  Google Scholar 

  7. King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  9. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13:555–556

    Article  CAS  Google Scholar 

  10. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  11. Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11:715–724

    CAS  PubMed  Google Scholar 

  12. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    Article  CAS  PubMed  Google Scholar 

  13. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–123

    Chapter  Google Scholar 

  14. Yang Z, Yoder AD (1999) Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48:274–283

    Article  CAS  PubMed  Google Scholar 

  15. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  16. Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  17. Bielawski JP, Yang Z (2005) Maximum likelihood methods for detecting adaptive protein evolution. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer, New York, pp 103–124

    Chapter  Google Scholar 

  18. Li WH, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  19. Leitner T, Kumar S, Albert J (1997) Tempo and mode of nucleotide substitutions in gag and env gene fragments in human immunodeficiency virus type 1 populations with a known transmission history. J Virol 71:4761–4770

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang Z, Nielsen R, Goldman N et al (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grantham R, Gautier C, Gouy M et al (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8:r49–r62

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12:640–649

    Article  CAS  PubMed  Google Scholar 

  23. Akashi H (1995) Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139:1067–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharp PM, Averof M, Lloyd AT et al (1995) DNA sequence evolution: the sounds of silence. Philos T Roy Soc B 349:241–247

    Article  CAS  Google Scholar 

  25. Yang Z, Nielsen R (2008) Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol 25:568–579

    Article  CAS  PubMed  Google Scholar 

  26. Thorne JL, Kishino H, Felsenstein J (1992) Inching toward reality: an improved likelihood model of sequence evolution. J Mol Evol 34:3–16

    Article  CAS  PubMed  Google Scholar 

  27. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    Article  CAS  PubMed  Google Scholar 

  28. Yang Z, Swanson WJ (2002) Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19:49–57

    Article  PubMed  Google Scholar 

  29. Nielsen R (1997) The ratio of replacement to silent divergence and tests of neutrality. J Evol Biol 10:217–231

    Article  Google Scholar 

  30. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    Article  CAS  PubMed  Google Scholar 

  32. Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409–418

    Article  CAS  PubMed  Google Scholar 

  33. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    Article  CAS  PubMed  Google Scholar 

  34. Bielawski JP, Yang ZH (2004) A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 59:121–132

    Article  CAS  PubMed  Google Scholar 

  35. Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  CAS  PubMed  Google Scholar 

  37. Yang Z, Bielawski J (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  CAS  PubMed  Google Scholar 

  38. Whelan S, Goldman N (1999) Distribution of statistics used for comparison of models of sequence evolution in phylogenetics. Mol Biol Evol 16:1292–1299

    Article  CAS  Google Scholar 

  39. Anisimova M, Bielawski JP, Yang Z (2001) Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585–1592

    Article  CAS  PubMed  Google Scholar 

  40. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  41. Nei MM, Suzuki YY, Nozawa MM (2010) The neutral theory of molecular evolution in the genomic era. Ann Rev Genom Hum G 11:265–289

    Article  CAS  Google Scholar 

  42. Whelan S, Goldman N (2004) Estimating the frequency of events that cause multiple-nucleotide changes. Genetics 167:2027–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kosiol C, Holmes I, Goldman N (2007) An empirical codon model for protein sequence evolution. Mol Biol Evol 24:1464–1479

    Article  CAS  PubMed  Google Scholar 

  44. Harrisson KA, Pavlova A, Telonis-Scott M et al (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl. doi:10.1111/eva.12149

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Alexandra Pavlova for comments and suggestions on an earlier draft of the chapter. I would like to express my deepest gratitude to my supervisor Rohan Clarke, who has given me the freedom and encouragement to explore evolution, adaptation, and bioinformatics in a whole new light, even though he would much rather I went bird-watching. I am also grateful to Paul Sunnucks, whom I had as an idol while still a bright-eyed, young, and naive biology student, and who turned out to be all that I expected and more. Finally, I would also like to thank Jonathan Keith for the opportunity, and for showing me the path to Bayesian theory in evolutionary work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Gonçalves da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

da Silva, A.G. (2017). Measuring Natural Selection. In: Keith, J. (eds) Bioinformatics. Methods in Molecular Biology, vol 1525. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6622-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6622-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6620-2

  • Online ISBN: 978-1-4939-6622-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics