Skip to main content

Analysis of DNA Methylation in Clinical Samples: Methods and Applications

  • Chapter
  • First Online:
Molecular Pathology in Cancer Research

Abstract

DNA methylation is the only level of epigenetic change that can be readily assessed in most clinical samples. However, DNA methylation assays are largely confined to specialised, often research-oriented laboratories. This arises from a number of factors including lack of standardisation of methodologies, difficulties in choosing a consensus region for analysis, and the requirement for expertise in the interpretation of what can often be complex results.

A large number of methodologies have been developed to measure DNA methylation. Most of these methodologies have limitations, particularly when biological samples are being tested. This is due to the multiple possible combinations of methylated CpG positions in the templates (epialleles), ranging from all CpG sites being methylated to just a few or none being methylated. In addition, DNA from clinical samples, like formalin-fixed paraffin-embedded tissues or plasma DNA, is fragmented necessitating further methodological adaptations.

Analysis of DNA methylation has entered the mainstream of ‘omics’ analysis with DNA methylation profiling being included with mutation profiling and gene expression analysis as part of comprehensive genomic analyses of cancer. However, integrating DNA methylation information into precision medicine remains a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mikeska T, Bock C, Do H, Dobrovic A (2012) DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn 12:473–487

    Article  CAS  PubMed  Google Scholar 

  2. Mikeska T, Craig JM (2014) DNA methylation biomarkers: cancer and beyond. Genes (Basel) 5:821–864

    Google Scholar 

  3. Mikeska T, Candiloro I, Dobrovic A (2010) The methodological implications of heterogeneous DNA methylation for the use of methylation as a biomarker. Epigenomics 2:561–573

    Article  CAS  PubMed  Google Scholar 

  4. BLUEPRINT Consortium (2016) Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol 34:726–737

    Google Scholar 

  5. Dobrovic A (2005) Methods for analysis of DNA methylation. In Coleman WB, Tsongalis GJ (eds) Molecular diagnostics for the clinical laboratorian. 2nd Edn. The Humana Press Inc, Totowa, pp 149–160

    Google Scholar 

  6. Kristensen LS, Treppendahl MB, Grønbæk K (2013) Analysis of epigenetic modifications of DNA in human cells. Curr Protoc Hum Genet 77:20.2.1–20.2.22

    Google Scholar 

  7. Kohli RM, Zhang Y (2013) TET enzymes. TDG and the dynamics of DNA demethylation. Nature 502:472–479.

    Google Scholar 

  8. Haffner MC, Chaux A, Meeker AK et al (2011) Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2:627–637

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hayatsu H, Wataya Y, Kai K (1970) The addition of sodium bisulfite to uracil and cytosine. J Am Chem Soc 92:724–726

    Article  CAS  PubMed  Google Scholar 

  10. Frommer M, Mcdonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang RY, Gehrke CW, Ehrlich M (1980) Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 8:4777–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ehrich M, Zoll S, Sur S, van den Boom D (2007) A new method for accurate assessment of DNA quality after bisulfite treatment. Nucleic Acids Res 35, e29

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29, e65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Do H, Dobrovic A (2015) Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem 61:64–71

    Article  CAS  PubMed  Google Scholar 

  15. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Snell C, Krypuy M, Wong EM et al (2008) BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res 10:R12

    Article  PubMed  PubMed Central  Google Scholar 

  17. Candiloro IL, Mikeska T, Hokland P, Dobrovic A (2008) Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene. Epigenetics Chromatin 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Colella S, Shen L, Baggerly KA et al (2003) Sensitive and quantitative universal pyrosequencing methylation analysis of CpG sites. Biotechniques 35:146–150

    CAS  PubMed  Google Scholar 

  19. Tost J, Dunker J, Glynne Gut I (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by pyrosequencing. Biotechniques 35:152–156

    CAS  PubMed  Google Scholar 

  20. Uhlmann K, Brinckmann A, Toliat MR et al (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis 23:4072–4079

    Article  CAS  PubMed  Google Scholar 

  21. Mikeska T, Felsberg J, Hewitt CA, Dobrovic A (2011) Analysing DNA methylation using bisulfite pyrosequencing. In Epigenetics protocols II. Humana Press, Totowa; Methods Mol Biol. 791:33–53

    Google Scholar 

  22. Varley KE, Mutch DG, Edmonston TB et al (2009) Intra-tumor heterogeneity of MLH1 promoter methylation revealed by deep single molecule bisulfite sequencing. Nucleic Acids Res 37:4603–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Korbie D, Lin E, Wall D (2015) Multiplex bisulfite PCR resequencing of clinical FFPE DNA. Clin Epigenet 7:28

    Article  Google Scholar 

  24. Wong NC, Pope BJ, Candiloro IL et al (2016) MethPat: a tool for the analysis and visualisation of complex methylation patterns obtained by massively parallel sequencing. BMC Bioinformatics 17:98

    Article  PubMed  PubMed Central  Google Scholar 

  25. Herman JG, Graff JR, Myohanen S et al (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aggerholm A, Guldberg P, Hokland M, Hokland P (1999) Extensive intra- and inter-individual heterogeneity of p15INK4B methylation in acute myeloid leukemia. Cancer Res 59:436–441

    CAS  PubMed  Google Scholar 

  27. Dodge JE, List AF, Futscher BW (1998) Selective variegated methylation of the p15 CpG island in acute myeloid leukemia. Int J Cancer 78:561–567

    Article  CAS  PubMed  Google Scholar 

  28. Do H, Wong N, Murone C et al (2014) A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma. Sci Rep 4:4186

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lim AM, Candiloro ILM, Wong N et al (2014) Quantitative methodology is critical for assessing DNA methylation and impacts on correlation with patient outcome. Clin Epigenet 6:22

    Article  Google Scholar 

  30. Kristensen LS, Raynor M, Candiloro IL, Dobrovic A (2012) Methylation profiling of normal individuals reveals mosaic promoter methylation of cancer associated genes. Oncotarget 3:450–461

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lo YMD, Wong IHN, Zhang J et al (1999) Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res 59:3899–3903

    CAS  PubMed  Google Scholar 

  32. Eads CA, Danenberg KD, Kawakami K et al (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28, e32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan MW, Chu ES, To KF, Leung WK (2004) Quantitative detection of methylated SOCS-1, a tumor suppressor gene, by a modified protocol of quantitative real time methylation- specific PCR using SYBR green and its use in early gastric cancer detection. Biotechnol Lett 26:1289–1293

    Article  CAS  PubMed  Google Scholar 

  34. Kristensen LS, Mikeska T, Krypuy M, Dobrovic A (2008) Sensitive melting analysis after real time-methylation sensitive PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Res 36, e42

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35, e41

    Article  PubMed  PubMed Central  Google Scholar 

  36. Worm J, Aggerholm A, Guldberg P (2001) In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem 47:1183–1189

    CAS  PubMed  Google Scholar 

  37. Wong IH, Lo YM, Johnson J (2001) Epigenetic tumor markers in plasma and serum: biology and applications to molecular diagnosis and disease monitoring. Ann N Y Acad Sci 945:36–50

    Article  CAS  PubMed  Google Scholar 

  38. Avraham A, Uhlmann R, Shperber A et al (2012) Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. Int J Cancer 131:E1166–E1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Candiloro IL, Mikeska T, Dobrovic A (2011) Assessing combined methylation-sensitive high resolution melting and pyrosequencing for the analysis of heterogeneous DNA methylation. Epigenetics 6:500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wojdacz TK, Hansen LL, Dobrovic A (2008) A new approach to primer design for the control of PCR bias in methylation studies. BMC Res Notes 1:54

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dobrovic A, Simpfendorfer D (1997) Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57:3347–3350

    CAS  PubMed  Google Scholar 

  42. Singer-Sam J, Grant M, LeBon JM et al (1990) Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol 10:4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Melnikov AA, Gartenhaus RB, Levenson AS et al (2005) MSRE-PCR for analysis of gene-specific DNA methylation. Nucleic Acids Res 33, e93

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nygren AO, Ameziane N, Duarte HM et al (2005) Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res 33, e128

    Article  PubMed  PubMed Central  Google Scholar 

  45. Costello JF, Plass C, Cavenee WK (2002) Restriction landmark genome scanning. Methods Mol Biol 200:53–70

    CAS  PubMed  Google Scholar 

  46. Huang TH, Perry MR, Laux DE (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8:459–470

    Article  CAS  PubMed  Google Scholar 

  47. Shull AY, Noonepalle SK, Lee EJ, Choi JH, Shi H (2015) Sequencing the cancer methylome. Methods Mol Biol 1238:627–651

    Article  PubMed  Google Scholar 

  48. Bibikova M, Barnes B, Tsan C et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalgo ML, Jones PA (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res 25:2529–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Price ME, Cotton AM, Lam LL et al (2013) Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin 6:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wilhelm-Benartzi CS, Koestler DC, Karagas MR et al (2013) Review of processing and analysis methods for DNA methylation array data. Br J Cancer 109:1394–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thirlwell C, Eymard M, Feber A et al (2010) Genome-wide DNA methylation analysis of archival formalin-fixed paraffin-embedded tissue using the Illumina Infinium HumanMethylation27 BeadChip. Methods 52:248–254

    Article  CAS  PubMed  Google Scholar 

  53. Langevin SM, Kelsey KT (2013) The fate is not always written in the genes: epigenomics in epidemiologic studies. Environ Mol Mutagen 54:533–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Costello JF, Fruhwald MC, Smiraglia DJ et al (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138

    Article  CAS  PubMed  Google Scholar 

  55. Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    CAS  PubMed  Google Scholar 

  56. Lee WH, Isaacs WB, Bova GS, Nelson WG (1997) CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol Biomarkers Prev 6:443–450

    CAS  PubMed  Google Scholar 

  57. Goessl C, Muller M, Straub B, Miller K (2002) DNA alterations in body fluids as molecular tumor markers for urological malignancies. Eur Urol 41:668–676

    Article  CAS  PubMed  Google Scholar 

  58. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra24

    Google Scholar 

  59. Jahr S, Hentze S, Englisch S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

    CAS  PubMed  Google Scholar 

  60. Sun K, Jiang P, Chan KC et al (2015) Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A 112:E5503–E5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pang JM, Deb S, Takano EA et al (2014) Methylation profiling of ductal carcinoma in situ and its relationship to histopathological features. Breast Cancer Res 16:423

    Article  PubMed  PubMed Central  Google Scholar 

  62. Belinsky SA, Nikul KJ, Palmisano WA et al (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A 95:11,891–11,896

    Google Scholar 

  63. Evron E, Dooley WC, Umbricht CB et al (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357:1335–1336

    Article  CAS  PubMed  Google Scholar 

  64. Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354

    Article  CAS  PubMed  Google Scholar 

  65. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  66. Middleton MR, Grob JJ, Aaronson N et al (2000) Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 18:158–166

    CAS  PubMed  Google Scholar 

  67. Schraml P, von Teichman A, Mihic-Probst D et al (2012) Predictive value of the MGMT promoter methylation status in metastatic melanoma patients receiving first-line temozolomide plus bevacizumab in the trial SAKK 50/07. Oncol Rep 28:654–658

    CAS  PubMed  Google Scholar 

  68. TCGA (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  Google Scholar 

  69. Stefansson OA, Villanueva A, Vidal A et al (2012) BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer. Epigenetics 11:1225–1229

    Article  Google Scholar 

  70. Veeck J, Ropero S, Setien F et al (2010) BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors. J Clin Oncol 28:e563–e564

    Article  PubMed  Google Scholar 

  71. Kane MF, Loda M, Gaida GM et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811

    CAS  PubMed  Google Scholar 

  72. Toyota M, Ahuja N, Ohe-Toyota M et al (2001) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    Article  Google Scholar 

  73. Newton K, Jorgensen NM, Wallace AJ, Buchanan DD, Lalloo F, McMahon RF, Hill J, Evans DG (2014) Tumour MLH1 promoter region methylation testing is an effective prescreen for Lynch Syndrome (HNPCC). J Med Genet 51:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Loughrey MB, Waring PM, Tan A et al (2007) Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer. Fam Cancer 6:301–310

    Article  CAS  PubMed  Google Scholar 

  75. Metcalf AM, Spurdle AB (2014) Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review. Fam Cancer 13:1–12

    Article  CAS  PubMed  Google Scholar 

  76. Yu M, Carter KT, Makar KW, Vickers K et al (2015) MethyLight droplet digital PCR for detection and absolute quantification of infrequently methylated alleles. Epigenetics 10:803–809

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I acknowledge my colleagues in DNA methylation, both those whom I have cited and those whose contributions I have omitted due to lack of space. I would like to thank Thomas Mikeska and Basant Ebaid for helpful comments on several drafts. Funding underlying this work is from the National Breast Cancer Foundation of Australia (CG-10-04, CG-12-07, PS-15-048), Cancer Australia (ID 1009892), the Cancer Council of Victoria, and the Victorian Cancer Agency (TRP13025, TRP13026). The Olivia Newton-John Cancer Research Institute is supported by the Victorian Government Operational and Infrastructure Support Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dobrovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Dobrovic, A. (2016). Analysis of DNA Methylation in Clinical Samples: Methods and Applications. In: Lakhani, S., Fox, S. (eds) Molecular Pathology in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6643-1_12

Download citation

Publish with us

Policies and ethics