Skip to main content

Epstein-Barr Virus: Clinical Diagnostics

  • Protocol
  • First Online:
Epstein Barr Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1532))

Abstract

The vast majority of the human adult population is infected with Epstein-Barr virus (EBV), and the majority of the EBV-infected individuals tolerates the infection well, without any further symptoms after primary infection. In cases of individuals which undergo primary infection in the form of an infectious mononucleosis, or which have undergone primary infection in their past, it is sometimes important to appraise symptomatic disease or differentiate infectious mononucleosis from other conditions. In these cases, serological methods, i.e., immunofluorescence, ELISA, or Western blot, are the methods of choice to come to an unequivocal diagnostic conclusion, while the detection and quantification of viral DNA through PCR plays a minor role.

On the other hand, in a minority of the human population, EBV infection is associated or causally linked with autoimmune or malignant disease. Especially in the bone marrow or solid organ transplanted, or in otherwise severely immune-suppressed patients, prolonged EBV primary infection or EBV reactivation from latency may be a serious and life-threatening complication which needs to be diagnosed the faster the better, in order to take therapeutic steps in time. Determining the serostatus correctly is also important in these cases. However, the direct and quantitative detection of viral DNA are of importance for the diagnosis of serious EBV disease and its monitoring.

In the following, we give an overview of diagnostic methods to accurately determine EBV serostatus and viral load. We evaluate the advantages and disadvantages of each method and report on the diagnostic significance of each and how to resolve diagnostic problems in case of uncertainties. For practical procedures, we refer to the detailed instruction manuals of the respective test kit manufacturers which have to be closely followed for reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  CAS  PubMed  Google Scholar 

  2. zur Hausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G, Clifford P, Santesson L (1970) EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228(5276):1056–1058

    Article  CAS  PubMed  Google Scholar 

  3. Wolf H, zur Hausen H, Becker V (1973) EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat New Biol 244(138):245–247

    Article  CAS  PubMed  Google Scholar 

  4. Cohen JI (2000) Epstein-Barr virus infection. N Engl J Med 343(7):481–492

    Article  CAS  PubMed  Google Scholar 

  5. Cohen JI, Bollard CM, Khanna R, Pittaluga S (2008) Current understanding of the role of Epstein-Barr virus in lymphomagenesis and therapeutic approaches to EBV-associated lymphomas. Leuk Lymphoma 49(Suppl 1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bornkamm GW (2009) Epstein-Barr virus and its role in the pathogenesis of Burkitt’s lymphoma: an unresolved issue. Semin Cancer Biol 19(6):351–365

    Article  CAS  PubMed  Google Scholar 

  7. Niller HH, Szenthe K, Minarovits J (2014) Epstein-Barr virus-host cell interactions: an epigenetic dialog? Front Genet 5:367

    Article  PubMed  PubMed Central  Google Scholar 

  8. Niller HH, Salamon D, Ilg K, Koroknai A, Banati F, Bauml G, Rucker O, Schwarzmann F, Wolf H, Minarovits J (2003) The in vivo binding site for oncoprotein c-Myc in the promoter for Epstein-Barr virus (EBV) encoding RNA (EBER) 1 suggests a specific role for EBV in lymphomagenesis. Med Sci Monit 9(1):HY1–HY9

    CAS  PubMed  Google Scholar 

  9. Niller HH, Salamon D, Ilg K, Koroknai A, Banati F, Schwarzmann F, Wolf H, Minarovits J (2004) EBV-associated neoplasms: alternative pathogenetic pathways. Med Hypotheses 62(3):387–391

    Article  CAS  PubMed  Google Scholar 

  10. Gromminger S, Mautner J, Bornkamm GW (2012) Burkitt lymphoma: the role of Epstein-Barr virus revisited. Br J Haematol 156(6):719–729

    Article  PubMed  Google Scholar 

  11. Rickinson AB (2014) Co-infections, inflammation and oncogenesis: future directions for EBV research. Semin Cancer Biol 26:99–115

    Article  CAS  PubMed  Google Scholar 

  12. Kreck B, Richter J, Ammerpohl O, Barann M, Esser D, Petersen BS, Vater I, Murga Penas EM, Bormann Chung CA, Seisenberger S, Lee Boyd V, Smallwood S, Drexler HG, Macleod RA, Hummel M, Krueger F, Hasler R, Schreiber S, Rosenstiel P, Franke A, Siebert R (2013) Base-pair resolution DNA methylome of the EBV-positive Endemic Burkitt lymphoma cell line DAUDI determined by SOLiD bisulfite-sequencing. Leukemia 27(8):1751–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen KD, Sabunciyan S, Langmead B, Nagy N, Curley R, Klein G, Klein E, Salamon D, Feinberg AP (2014) Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization. Genome Res 24(2):177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Navari M, Fuligni F, Laginestra MA, Etebari M, Ambrosio MR, Sapienza MR, Rossi M, De Falco G, Gibellini D, Tripodo C, Pileri SA, Leoncini L, Piccaluga PP (2014) Molecular signature of Epstein Barr virus-positive Burkitt lymphoma and post-transplant lymphoproliferative disorder suggest different roles for Epstein Barr virus. Front Microbiol 5:728

    Article  PubMed  PubMed Central  Google Scholar 

  15. Niller HH, Salamon D, Banati F, Schwarzmann F, Wolf H, Minarovits J (2004) The LCR of EBV makes Burkitt’s lymphoma endemic. Trends Microbiol 12(11):495–499

    Article  CAS  PubMed  Google Scholar 

  16. Niller HH, Wolf H, Minarovits J (2009) Epigenetic dysregulation of the host cell genome in Epstein-Barr virus-associated neoplasia. Semin Cancer Biol 19(3):158–164

    Article  CAS  PubMed  Google Scholar 

  17. Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG (2009) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A 106(7):2313–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao JY, Mansouri S, Frappier L (2012) Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein-Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses. J Virol 86(1):382–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frappier L (2012) Contributions of Epstein-Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses 4(9):1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Linde A, Fridell E, Dahl H, Andersson J, Biberfeld P, Wahren B (1990) Effect of primary Epstein-Barr virus infection on human herpesvirus 6, cytomegalovirus, and measles virus immunoglobulin G titers. J Clin Microbiol 28(2):211–215

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Karner W, Bauer G (1994) Activation of a varicella-zoster virus-specific IgA response during acute Epstein-Barr virus infection. J Med Virol 44(3):258–262

    Article  CAS  PubMed  Google Scholar 

  22. Bauer G (1992) Die Aussagemöglichkeiten der Epstein-Barr-Virus-Diagnostik [The diagnostic value of Epstein-Barr virus diagnosis]. Internist (Berl) 33(9):586–592

    CAS  Google Scholar 

  23. Bauer G (1995) Rationale und rationelle EBV-Diagnostik. Clin Lab 41:623–634

    CAS  Google Scholar 

  24. Schillinger M, Kampmann M, Henninger K, Murray G, Hanselmann I, Bauer G (1993) Variability of humoral immune response to acute Epstein-Barr virus (EBV) infection: evaluation of the significance of serological markers. Med Microbiol Lett 2:296–303

    Google Scholar 

  25. Bauer G (2001) Simplicity through complexity: immunoblot with recombinant antigens as the new gold standard in Epstein-Barr virus serology. Clin Lab 47(5–6):223–230

    CAS  PubMed  Google Scholar 

  26. Motz M, Fan J, Seibl R, Jilg W, Wolf H (1986) Expression of the Epstein-Barr virus 138-kDa early protein in Escherichia coli for the use as antigen in diagnostic tests. Gene 42(3):303–312

    Article  CAS  PubMed  Google Scholar 

  27. Pottgiesser T, Wolfarth B, Schumacher YO, Bauer G (2006) Epstein-Barr virus serostatus: no difference despite aberrant patterns in athletes and control group. Med Sci Sports Exerc 38(10):1782–1791

    Article  PubMed  Google Scholar 

  28. Pottgiesser T, Schumacher YO, Wolfarth B, Schmidt-Trucksass A, Bauer G (2012) Longitudinal observation of Epstein-Barr virus antibodies in athletes during a competitive season. J Med Virol 84(9):1415–1422

    Article  CAS  PubMed  Google Scholar 

  29. Reischl U, Gerdes C, Motz M, Wolf H (1996) Expression and purification of an Epstein-Barr virus encoded 23-kDa protein and characterization of its immunological properties. J Virol Methods 57(1):71–85

    Article  CAS  PubMed  Google Scholar 

  30. Wolter T, Gassmann C, Vetter V, Bauer G (1997) Avidity determination: utilization of a basic immunological mechanisms allows to improve serological diagnosis of infections. Clin Lab 43:125–135

    CAS  Google Scholar 

  31. Andersson A, Vetter V, Kreutzer L, Bauer G (1994) Avidities of IgG directed against viral capsid antigen or early antigen: useful markers for significant Epstein-Barr virus serology. J Med Virol 43(3):238–244

    Article  CAS  PubMed  Google Scholar 

  32. Vetter V, Kreutzer L, Bauer G (1994) Differentiation of primary from secondary anti-EBNA-1-negative cases by determination of avidity of VCA-IgG. Clin Diagn Virol 2(1):29–39

    Article  CAS  PubMed  Google Scholar 

  33. Weber B, Brunner M, Preiser W, Doerr HW (1996) Evaluation of 11 enzyme immunoassays for the detection of immunoglobulin M antibodies to Epstein-Barr virus. J Virol Methods 57(1):87–93

    Article  CAS  PubMed  Google Scholar 

  34. Gärtner BC, Hess RD, Bandt D, Kruse A, Rethwilm A, Roemer K, Mueller-Lantzsch N (2003) Evaluation of four commercially available Epstein-Barr virus enzyme immunoassays with an immunofluorescence assay as the reference method. Clin Diagn Lab Immunol 10(1):78–82

    PubMed  PubMed Central  Google Scholar 

  35. Corrales I, Gimenez E, Navarro D (2014) Evaluation of the Architect Epstein-Barr Virus (EBV) viral capsid antigen (VCA) IgG, VCA IgM, and EBV nuclear antigen 1 IgG chemiluminescent immunoassays for detection of EBV antibodies and categorization of EBV infection status using immunofluorescence assays as the reference method. Clin Vaccine Immunol 21(5):684–688

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guerrero-Ramos A, Patel M, Kadakia K, Haque T (2014) Performance of the architect EBV antibody panel for determination of Epstein-Barr virus infection stage in immunocompetent adolescents and young adults with clinical suspicion of infectious mononucleosis. Clin Vaccine Immunol 21(6):817–823

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gärtner BC, Kortmann K, Schafer M, Mueller-Lantzsch N, Sester U, Kaul H, Pees H (2000) No correlation in Epstein-Barr virus reactivation between serological parameters and viral load. J Clin Microbiol 38(6):2458

    PubMed  PubMed Central  Google Scholar 

  38. Gärtner B, Preiksaitis JK (2010) EBV viral load detection in clinical virology. J Clin Virol 48(2):82–90

    Article  PubMed  Google Scholar 

  39. Adham M, Greijer AE, Verkuijlen SA, Juwana H, Fleig S, Rachmadi L, Malik O, Kurniawan AN, Roezin A, Gondhowiardjo S, Atmakusumah D, Stevens SJ, Hermani B, Tan IB, Middeldorp JM (2013) Epstein-Barr virus DNA load in nasopharyngeal brushings and whole blood in nasopharyngeal carcinoma patients before and after treatment. Clin Cancer Res 19(8):2175–2186

    Article  CAS  PubMed  Google Scholar 

  40. Styczynski J, Reusser P, Einsele H, de la Camara R, Cordonnier C, Ward KN, Ljungman P, Engelhard D, Second European Conference on Infections in L (2009) Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant 43(10):757–770

    Google Scholar 

  41. Kimura H, Ito Y, Suzuki R, Nishiyama Y (2008) Measuring Epstein-Barr virus (EBV) load: the significance and application for each EBV-associated disease. Rev Med Virol 18(5):305–319

    Article  CAS  PubMed  Google Scholar 

  42. Kittan NA, Beier F, Kurz K, Niller HH, Egger L, Jilg W, Andreesen R, Holler E, Hildebrandt GC (2011) Isolated cerebral manifestation of Epstein-Barr virus-associated post-transplant lymphoproliferative disorder after allogeneic hematopoietic stem cell transplantation: a case of clinical and diagnostic challenges. Transpl Infect Dis 13(5):524–530

    Article  CAS  PubMed  Google Scholar 

  43. Plentz A, Jilg W, Kochanowski B, Ibach B, Knoll A (2008) Detection of herpesvirus DNA in cerebrospinal fluid and correlation with clinical symptoms. Infection 36(2):158–162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Helmut Niller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Niller, HH., Bauer, G. (2017). Epstein-Barr Virus: Clinical Diagnostics. In: Minarovits, J., Niller, H. (eds) Epstein Barr Virus. Methods in Molecular Biology, vol 1532. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6655-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6655-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6653-0

  • Online ISBN: 978-1-4939-6655-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics