Skip to main content

Label-Based and Label-Free Strategies for Protein Quantitation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1549))

Abstract

The precise quantification of changes between various physiological states in a biological system is highly complex in nature. Over the past few years, in combination with classical methods, mass spectrometry based approaches have become an indispensable tool in deciphering exact abundance of proteins in composite mixtures. The technique is now well established and employs both label-based and label-free quantitation strategies. Label-based quantitation methods utilize stable isotope labels which are incorporated within the peptides, introducing an expectable mass difference within the two or more experimental conditions. In contrast, label-free proteomics quantitates both relative and absolute protein quantity by utilizing signal intensity and spectral counting of peptides. This chapter focuses on the commonly used quantitative mass spectrometry methods for high-throughput proteomic analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mathivanan S (2014) Integrated bioinformatics analysis of the publicly available protein data shows evidence for 96% of the human proteome. J Proteomics Bioinform 7:41–49

    Article  Google Scholar 

  2. Kuster B, Schirle M, Mallick P, Aebersold R (2005) Scoring proteomes with proteotypic peptide probes. Nat Rev Mol Cell Biol 6(7):577–583

    Article  CAS  PubMed  Google Scholar 

  3. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509(7502):575–581. doi:10.1038/nature13302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587. doi:10.1038/nature13319

    Article  CAS  PubMed  Google Scholar 

  6. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  8. Boja ES, Rodriguez H (2012) Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 12(8):1093–1110. doi:10.1002/pmic.201100387

    Article  CAS  PubMed  Google Scholar 

  9. Chisanga D, Keerthikumar S, Pathan M, Ariyaratne D, Kalra H, Boukouris S, Mathew NA, Saffar HA, Gangoda L, Ang CS, Sieber OM, Mariadason JM, Dasgupta R, Chilamkurti N, Mathivanan S (2016) Colorectal cancer atlas: an integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic Acids Res 44(D1):D969–D974. doi:10.1093/nar/gkv1097

    Article  PubMed  Google Scholar 

  10. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15(15):2597–2601. doi:10.1002/pmic.201400515

    Article  CAS  PubMed  Google Scholar 

  11. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  12. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031. doi:10.1007/s00216-007-1486-6

    Article  CAS  PubMed  Google Scholar 

  13. Zhang G, Ueberheide BM, Waldemarson S, Myung S, Molloy K, Eriksson J, Chait BT, Neubert TA, Fenyö D (2010) Protein quantitation using mass spectrometry. Meth Mol Biol (Clifton, NJ) 673:211–222. doi:10.1007/978-1-60761-842-3_13

    Article  CAS  Google Scholar 

  14. Keiji K, Takashi I (2008) Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 9(4):263–274. doi:10.2174/138920208784533647

    Article  Google Scholar 

  15. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28(7):710–721

    Article  CAS  PubMed  Google Scholar 

  16. Iliuk A, Galan J, Tao WA (2009) Playing tag with quantitative proteomics. Anal Bioanal Chem 393(2):503–513. doi:10.1007/s00216-008-2386-0

    Article  CAS  PubMed  Google Scholar 

  17. Geiger T, Wisniewski JR, Cox J, Zanivan S, Kruger M, Ishihama Y, Mann M (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6(2):147–157

    Article  CAS  PubMed  Google Scholar 

  18. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci 96(12):6591–6596. doi:10.1073/pnas.96.12.6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable Isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386. doi:10.1074/mcp.M200025-MCP200

    Article  CAS  PubMed  Google Scholar 

  20. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958

    Article  CAS  PubMed  Google Scholar 

  21. Harsha HC, Molina H, Pandey A (2008) Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 3(3):505–516

    Article  CAS  PubMed  Google Scholar 

  22. Zhang R, Sioma CS, Wang S, Regnier FE (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73(21):5142–5149. doi:10.1021/ac010583a

    Article  CAS  PubMed  Google Scholar 

  23. Hsu J-L, Huang S-Y, Chow N-H, Chen S-H (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75(24):6843–6852. doi:10.1021/ac0348625

    Article  CAS  PubMed  Google Scholar 

  24. Kovanich D, Cappadona S, Raijmakers R, Mohammed S, Scholten A, Heck AJR (2012) Applications of stable isotope dimethyl labeling in quantitative proteomics. Anal Bioanal Chem 404(4):991–1009. doi:10.1007/s00216-012-6070-z

    Article  CAS  PubMed  Google Scholar 

  25. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494

    Article  CAS  PubMed  Google Scholar 

  26. Chahrour O, Cobice D, Malone J (2015) Stable isotope labeling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal 113:2–20. doi:10.1016/j.jpba.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  27. Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reynolds KJ, Yao X, Fenselau C (2002) Proteolytic 18O labeling for comparative proteomics: evaluation of endoprotease Glu-C as the catalytic agent. J Proteome Res 1(1):27–33. doi:10.1021/pr0100016

    Article  CAS  PubMed  Google Scholar 

  29. Heller M, Mattou H, Menzel C, Yao X (2003) Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. J Am Soc Mass Spectrom 14(7):704–718. doi:10.1016/S1044-0305(03)00207-1

    Article  CAS  PubMed  Google Scholar 

  30. Miyagi M, Rao KCS (2007) Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom Rev 26(1):121–136. doi:10.1002/mas.20116

    Article  CAS  PubMed  Google Scholar 

  31. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, Hulett MD, Mathivanan S (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13(22):3354–3364. doi:10.1002/pmic.201300282

    Article  CAS  PubMed  Google Scholar 

  32. Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. Int J Plant Genomics 2012:17. doi:10.1155/2012/494572

    Article  Google Scholar 

  33. Yan W, Chen SS (2005) Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic 4(1):27–38. doi:10.1093/bfgp/4.1.27

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, You J, Bemis KG, Tegeler TJ, Brown DPG (2008) Label-free mass spectrometry-based protein quantification technologies in proteomic analysis. Brief Funct Genomic Proteomic 7(5):329–339. doi:10.1093/bfgp/eln031

    Article  CAS  PubMed  Google Scholar 

  35. Megger DA, Bracht T, Meyer HE, Sitek B (2013) Label-free quantification in clinical proteomics. Biochim Biophys Acta 1834(8):1581–1590. doi:10.1016/j.bbapap.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  36. Wasinger VC, Zeng M, Yau Y (2013) Current status and advances in quantitative proteomic mass spectrometry. Int J Proteomics 2013:12. doi:10.1155/2013/180605

    Article  Google Scholar 

  37. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11(4):535–553. doi:10.1002/pmic.201000553

    Article  CAS  PubMed  Google Scholar 

  38. Arike L, Peil L (2014) Spectral counting label-free proteomics. In: Martins-de-Souza D (ed) Shotgun proteomics: methods and protocols. Springer, New York, NY, pp 213–222. doi:10.1007/978-1-4939-0685-7_14

    Chapter  Google Scholar 

  39. Shinoda K, Tomita M, Ishihama Y (2010) emPAI Calc--for the estimation of protein abundance from large-scale identification data by liquid chromatography-tandem mass spectrometry. Bioinformatics 26(4):576–577. doi:10.1093/bioinformatics/btp700

    Article  CAS  PubMed  Google Scholar 

  40. Chiu C-W, Chang C-L, Chen S-F (2012) Evaluation of peptide fractionation strategies used in proteome analysis. J Sep Sci 35(23):3293–3301. doi:10.1002/jssc.201200631

    Article  CAS  PubMed  Google Scholar 

  41. Mathivanan S, Ji H, Tauro BJ, Chen YS, Simpson RJ (2012) Identifying mutated proteins secreted by colon cancer cell lines using mass spectrometry. J Proteomics 76:141–149. doi:10.1016/j.jprot.2012.06.031

    Article  CAS  PubMed  Google Scholar 

  42. Gangoda L, Keerthikumar S, Fonseka P, Edgington LE, Ang CS, Ozcitti C, Bogyo M, Parker BS, Mathivanan S (2015) Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin. Oncotarget 6(13):11175–11190. doi:10.18632/oncotarget.3579

    Article  PubMed  PubMed Central  Google Scholar 

  43. Keerthikumar S, Gangoda L, Liem M, Fonseka P, Atukorala I, Ozcitti C, Mechler A, Adda CG, Ang CS, Mathivanan S (2015) Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget 6:15375–15396

    Article  PubMed  PubMed Central  Google Scholar 

  44. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP (2006) Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A 103(50):18928–18933. doi:10.1073/pnas.0606379103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McIlwain S, Mathews M, Bereman MS, Rubel EW, MacCoss MJ, Noble WS (2012) Estimating relative abundances of proteins from shotgun proteomics data. BMC Bioinformatics 13:308. doi:10.1186/1471-2105-13-308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Mathivanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Anand, S., Samuel, M., Ang, CS., Keerthikumar, S., Mathivanan, S. (2017). Label-Based and Label-Free Strategies for Protein Quantitation. In: Keerthikumar, S., Mathivanan, S. (eds) Proteome Bioinformatics. Methods in Molecular Biology, vol 1549. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6740-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6740-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6738-4

  • Online ISBN: 978-1-4939-6740-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics