Skip to main content

Evaluating Iron Flux in the Brain

  • Protocol
  • First Online:
Metals in the Brain

Part of the book series: Neuromethods ((NM,volume 124))

  • 635 Accesses

Abstract

Regulated efflux of iron from cells is a fundamental event in controlling the intracellular pool of labile iron. Imbalance to this pool can be detrimental to the cell either through impairment to metabolic pathways when deficient or production of hydroxyl radicals when in excess. While ferroportin is currently the only known iron export pore protein in all cell types of the brain, its functional location is established through protein complexes that vary between cell types. Here, we describe selected experimental techniques that can evaluate iron flux as well as the downstream changes to the labile intracellular pool of iron within the whole brain or select cell types. Our aim is to provide the reader with previously applied procedures using resources available in most biochemical laboratories for interrogating cellular location and movement of iron in cells and tissue that has derived from brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell MJ, Daniel RM, Hall AJ (1993) On the emergence of life via catalytic iron-sulphide membranes. Terra Nova 5(4):343–347

    Article  Google Scholar 

  2. Nam W (2007) High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc Chem Res 40(7):522–531

    Article  CAS  PubMed  Google Scholar 

  3. Holleman AF, Egon W, Nils W 1985 “Iron”. Lehrbuch der Anorganischen Chemie (in German). Walter de Gruyter

    Google Scholar 

  4. Sutin N (1966) Kinetics of inorganic reactions in solution. Annu Rev Phys Chem 17(1): 119–172

    Google Scholar 

  5. Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33(10):940–959

    Article  CAS  PubMed  Google Scholar 

  6. Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131(2S-2):568S–579S discussion 580S

    CAS  PubMed  Google Scholar 

  7. Hare D et al (2013) A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fenton HJH (1894) LXXIII.-oxidation of tartaric acid in presence of iron. J Chem Soc, Trans 65:899–910

    Article  CAS  Google Scholar 

  9. Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London Ser A 147(861):332–351

    Article  CAS  Google Scholar 

  10. Conrad ME, Umbreit JN (2000) Disorders of iron metabolism. N Engl J Med 342(17):1293–1294

    Article  CAS  PubMed  Google Scholar 

  11. Gerlach M et al (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63(3):793–807

    Article  CAS  PubMed  Google Scholar 

  12. Griffiths PD, Crossman AR (1993) Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia 4(2):61–65

    CAS  PubMed  Google Scholar 

  13. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  14. Dickman SR, Cloutier AA (1950) Activation and stabilization of aconitase by ferrous ions. Arch Biochem 25(1):229–231

    CAS  PubMed  Google Scholar 

  15. Redfearn ER, King TE (1964) Mitochondrial Nadh2 dehydrogenase and Nadh2 oxidase from heart muscle: possible existence of a ferredoxin-like component in the respiratory chain. Nature 202:1313–1316

    Article  CAS  PubMed  Google Scholar 

  16. Slater EC (1949) The measurement of the cytochrome oxidase activity of enzyme preparations. Biochem J 44(3):305–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jarvis JH, Jacobs A (1974) Morphological abnormalities in lymphocyte mitochondria associated with iron-deficiency anaemia. J Clin Pathol 27(12):973–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Masini A et al (1994) Dietary iron deficiency in the rat. II. Recovery from energy metabolism derangement of the hepatic tissue by iron therapy. Biochim Biophys Acta 1188(1-2):53–57

    Article  CAS  PubMed  Google Scholar 

  19. Walter PB et al (2002) Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci U S A 99(4):2264–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morath DJ, Mayer-Proschel M (2001) Iron modulates the differentiation of a distinct population of glial precursor cells into oligodendrocytes. Dev Biol 237(1):232–243

    Article  CAS  PubMed  Google Scholar 

  21. Armony-Sivan R et al (2004) Iron status and neurobehavioral development of premature infants. J Perinatol 24(12):757–762

    Article  CAS  PubMed  Google Scholar 

  22. Algarin C et al (2003) Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res 53(2):217–223

    Article  CAS  PubMed  Google Scholar 

  23. Roncagliolo M et al (1998) Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 mo: delayed maturation of auditory brainstem responses. Am J Clin Nutr 68(3):683–690

    CAS  PubMed  Google Scholar 

  24. Gottschall DW et al (1982) Phenylalanine hydroxylase. Correlation of the iron content with activity and the preparation and reconstitution of the apoenzyme. J Biol Chem 257(2):845–849

    CAS  PubMed  Google Scholar 

  25. Kuhn DM, Ruskin B, Lovenberg W (1980) Tryptophan hydroxylase. The role of oxygen, iron, and sulfhydryl groups as determinants of stability and catalytic activity. J Biol Chem 255(9):4137–4143

    CAS  PubMed  Google Scholar 

  26. Ramsey AJ, Hillas PJ, Fitzpatrick PF (1996) Characterization of the active site iron in tyrosine hydroxylase. Redox states of the iron. J Biol Chem 271(40):24395–24400

    Article  CAS  PubMed  Google Scholar 

  27. Youdim MB, Ben-Shachar D, Yehuda S (1989) Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior. Am J Clin Nutr 50(3 Suppl):607–615 discussion 615-7

    CAS  PubMed  Google Scholar 

  28. Crichton RR, Dexter DT, Ward RJ (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm (Vienna) 118(3):301–314

    Article  CAS  Google Scholar 

  29. Ke Y, Qian ZM (2007) Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 83(3):149–173

    Article  CAS  PubMed  Google Scholar 

  30. Moos T et al (2007) Iron trafficking inside the brain. J Neurochem 103(5):1730–1740

    Article  CAS  PubMed  Google Scholar 

  31. Sipe JC, Lee P, Beutler E (2002) Brain iron metabolism and neurodegenerative disorders. Dev Neurosci 24(2-3):188–196

    Article  CAS  PubMed  Google Scholar 

  32. Hochstrasser H et al (2004) Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology 63(10):1912–1917

    Article  CAS  PubMed  Google Scholar 

  33. Miyajima H et al (1987) Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 37(5):761–767

    Article  CAS  PubMed  Google Scholar 

  34. Chinnery PF et al (2007) Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 130(Pt 1):110–119

    PubMed  Google Scholar 

  35. Curtis AR et al (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28(4):350–354

    Article  CAS  PubMed  Google Scholar 

  36. Kaur D et al (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28(6):907–913

    Article  CAS  PubMed  Google Scholar 

  37. Chen JH et al (2013) Stable iron isotope tracing reveals significant brain iron uptake in adult rats. Metallomics 5(2):167–173

    Article  CAS  PubMed  Google Scholar 

  38. Finch CA, Huebers H (1982) Perspectives in iron metabolism. N Engl J Med 306(25):1520–1528

    Article  CAS  PubMed  Google Scholar 

  39. Deane R, Zheng W, Zlokovic BV (2004) Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain. J Neurochem 88(4):813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24(4):673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ganz T (2005) Cellular iron: ferroportin is the only way out. Cell Metab 1(3):155–157

    Article  CAS  PubMed  Google Scholar 

  42. Bradbury MW (1997) Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem 69(2):443–454

    Article  CAS  PubMed  Google Scholar 

  43. Breuer W, Hershko C, Cabantchik ZI (2000) The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci 23(3):185–192

    Article  CAS  PubMed  Google Scholar 

  44. Burdo JR et al (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66(6):1198–1207

    Article  CAS  PubMed  Google Scholar 

  45. Kaur C, Ling EA (1999) Increased expression of transferrin receptors and iron in amoeboid microglial cells in postnatal rats following an exposure to hypoxia. Neurosci Lett 262(3):183–186

    Article  CAS  PubMed  Google Scholar 

  46. Lane DJ et al (2010) Two routes of iron accumulation in astrocytes: ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem J 432(1):123–132

    Article  CAS  PubMed  Google Scholar 

  47. Todorich B et al (2008) Tim-2 is the receptor for H-ferritin on oligodendrocytes. J Neurochem 107(6):1495–1505

    Article  CAS  PubMed  Google Scholar 

  48. Benkovic SA, Connor JR (1993) Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol 338(1):97–113

    Article  CAS  PubMed  Google Scholar 

  49. Zecca L et al (2003) The neuromelanin of human substantia nigra: structure, synthesis and molecular behaviour. J Neural Transm Suppl 65:145–155

    Article  Google Scholar 

  50. Song N et al (2010) Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med 48(2):332–341

    Article  CAS  PubMed  Google Scholar 

  51. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278(29):27144–27148

    Article  CAS  PubMed  Google Scholar 

  52. Schulz K et al (2011) Iron efflux from oligodendrocytes is differentially regulated in gray and white matter. J Neurosci 31(37):13301–13311

    Article  CAS  PubMed  Google Scholar 

  53. Duce JA et al (2010) Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142(6):857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong BX et al (2014) A comparison of ceruloplasmin to biological polyanions in promoting the oxidation of Fe(2+) under physiologically relevant conditions. Biochim Biophys Acta 1840(12):3299–3310

    Article  CAS  PubMed  Google Scholar 

  55. Wong BX et al (2014) beta-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 9(12):e114174

    Article  PubMed  PubMed Central  Google Scholar 

  56. Krebs N et al (2014) Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J Trace Elem Med Biol 28(1):1–7

    Article  CAS  PubMed  Google Scholar 

  57. Hare DJ et al (2012) Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal Chem 84(9):3990–3997

    Article  CAS  PubMed  Google Scholar 

  58. Hayflick SJ et al (2006) Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 27(6):1230–1233

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McNeill A et al (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70(18):1614–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Breuer W, Epsztejn S, Cabantchik ZI (1995) Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II). J Biol Chem 270(41):24209–24215

    Article  CAS  PubMed  Google Scholar 

  61. Workman DG et al (2015) Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson’s with novel 1-hydroxypyridin-2-one metal chelators. Metallomics 7(5):867–876

    Article  CAS  PubMed  Google Scholar 

  62. Perls M (1867) Nachweis von Eisonoxyde in Pigmenten (Demonstration of iron oxide in certain pigments). Virchows Arch Pathol Anat Physiol Klin Med 39:42–48

    Article  Google Scholar 

  63. Meguro R et al (2007) Nonheme-iron histochemistry for light and electron microscopy: a historical, theoretical and technical review. Arch Histol Cytol 70(1):1–19

    Article  CAS  PubMed  Google Scholar 

  64. van Duijn S et al (2013) Comparison of histological techniques to visualize iron in paraffin-embedded brain tissue of patients with Alzheimer’s disease. J Histochem Cytochem 61(11):785–792

    Article  PubMed  PubMed Central  Google Scholar 

  65. Han O, Kim EY (2007) Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. J Cell Biochem 101(4):1000–1010

    Article  CAS  PubMed  Google Scholar 

  66. Julius MH, Masuda T, Herzenberg LA (1972) Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proc Natl Acad Sci U S A 69(7):1934–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen H et al (2004) Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice. Blood 103(10):3933–3939

    Article  CAS  PubMed  Google Scholar 

  68. De Domenico I et al (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26(12):2823–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26(1):323–342

    Article  CAS  PubMed  Google Scholar 

  70. Johnson DA, Osaki S, Frieden E (1967) A micromethod for the determination of ferroxidase (ceruloplasmin) in human serums. Clin Chem 13(2):142–150

    CAS  PubMed  Google Scholar 

  71. Osaki S, Johnson DA, Frieden E (1966) The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 241(12):2746–2751

    CAS  PubMed  Google Scholar 

  72. Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102(3):783–788

    Article  CAS  PubMed  Google Scholar 

  73. Marro S et al (2010) Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position −7007 of the FPN1 promoter. Haematologica 95(8):1261–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Taylor M et al (2011) Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140(7):2044–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harada N et al (2011) Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch Biochem Biophys 508(1):101–109

    Article  CAS  PubMed  Google Scholar 

  76. Wong BX, Duce JA (2014) The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 5:81

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Duce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wong, B.X., Lam, L.Q., Tsatsanis, A., Duce, J.A. (2017). Evaluating Iron Flux in the Brain. In: White, A. (eds) Metals in the Brain. Neuromethods, vol 124. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6918-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6918-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6916-6

  • Online ISBN: 978-1-4939-6918-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics