Skip to main content

Fuel of the Bacterial Flagellar Type III Protein Export Apparatus

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

The flagellar type III export apparatus utilizes ATP and proton motive force (PMF) across the cytoplasmic membrane as the energy sources and transports flagellar component proteins from the cytoplasm to the distal growing end of the growing structure to construct the bacterial flagellum beyond the cellular membranes. The flagellar type III export apparatus coordinates flagellar protein export with assembly by ordered export of substrates to parallel with their order of the assembly. The export apparatus is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. Since the ATPase complex is dispensable for flagellar protein export, PMF is the primary fuel for protein unfolding and translocation. Interestingly, the export gate complex can also use sodium motive force across the cytoplasmic membrane in addition to PMF when the ATPase complex does not work properly. Here, we describe experimental protocols, which have allowed us to identify the export substrate class and the primary fuel of the flagellar type III protein export apparatus in Salmonella enterica serovar Typhimurium.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    Article  CAS  PubMed  Google Scholar 

  2. Minamino T, Imada K, Namba K (2008) Mechanisms of type III protein export for bacterial flagellar assembly. Mol Biosyst 4:1105–1115

    Article  CAS  PubMed  Google Scholar 

  3. Minamino T, Imada K, Namba K (2008) Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18:693–701

    Article  CAS  PubMed  Google Scholar 

  4. Minamino T (2014) Protein export through the bacterial flagellar type III export pathway. Biochim Biophys Acta 1843:1642–1648

    Article  CAS  PubMed  Google Scholar 

  5. Minamino T, Macnab RM (1999) Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181:1388–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Minamino T, Doi H, Kutsukak K (1999) Substrate specificity switching of the flagellum-specific export apparatus during flagellar morphogenesis in Salmonella typhimurium. Biosci Biotechnol Biochem 63:1301–1303

    Article  CAS  PubMed  Google Scholar 

  7. Hirano T, Minamino T, Namba K, Macnab RM (2003) Substrate specificity class and the recognition signal for Salmonella type III flagellar export. J Bacteriol 185:2485–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kutsukake K, Minamino T, Yokoseki T (1994) Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J Bacteriol 176:7625–7629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williams AW, Yamaguchi S, Togashi F, Aizawa S, Kawagishi I, Macnab RM (1996) Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J Bacteriol 178:2960–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirano T, Mizuno S, Aizawa S, Hughes KT (2009) Mutations in Flk, FlgG, FlhA, and FlhE that affect the flagellar type III secretion specificity switch in Salmonella enterica. J Bacteriol 181:3938–3949

    Article  Google Scholar 

  11. Bange G, Kümmerer N, Engel C, Bozkurt G, Wild K, Sinning I (2010) FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system. Proc Natl Acad Sci U S A 107:11295–11300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kinoshita M, Hara N, Imada K, Namba K, Minamino T (2013) Interactions of bacterial chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament. Mol Microbiol 90:1249–1261

    Article  CAS  PubMed  Google Scholar 

  13. Minamino T, Namba K (2008) Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–488

    Article  CAS  PubMed  Google Scholar 

  14. Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT (2008) Energy source of flagellar type III secretion. Nature 451:489–492

    Article  CAS  PubMed  Google Scholar 

  15. Minamino T, Morimoto YV, Kinoshita M, Aldridge PD, Namba K (2014) The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Sci Rep 4:7579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minamino T, Morimoto YV, Hara N, Namba K (2011) An energy transduction mechanism used in bacterial type III protein export. Nat Commun 2:475

    Article  PubMed  PubMed Central  Google Scholar 

  17. Minamino T, Morimoto YV, Hara N, Aldridge PD, Namba K (2016) The bacterial flagellar type III export gate complex is a dual fuel engine that can use both H+ and Na+ for flagellar protein export. PLoS Pathog 12:e1005495

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yamaguchi S, Fujita H, Sugata K, Taira T, Iino T (1984) Genetic analysis of H2, the structural gene for phase-2 flagellin in Salmonella. J Gen Microbiol 130:255–265

    CAS  PubMed  Google Scholar 

  19. Ohnishi K, Ohto Y, Aizawa S, Macnab RM, Iino T (1994) FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol 176:2272–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Homma M, Fujita H, Yamaguchi S, Iino T (1984) Excretion of unassembled flagellin by Salmonella typhimurium mutants deficient in the hook-associated proteins. J Bacteriol 159:1056–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohnishi K, Fan F, Schoenhals GJ, Kihara M, Macnab RM (1997) The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: putative components for flagellar assembly. J Bacteriol 179:6092–6099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Minamino T, Yamaguchi S, Macnab RM (2000) Interaction between FliE and FlgB, a proximal rod component of the flagellar basal body of Salmonella. J Bacteriol 182:3029–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kazetani K, Minamino T, Miyata T, Kato T, Namba K (2009) ATP-induced FliI hexamerization facilitates bacterial flagellar protein export. Biochem Biophys Res Commun 388:323–327

    Article  CAS  PubMed  Google Scholar 

  24. Fan F, Macnab RM (1996) Enzymatic characterization of FliI: an ATPase involved in flagellar assembly in Salmonella typhimurium. J Biol Chem 271:31981–31988

    Article  CAS  PubMed  Google Scholar 

  25. Ryu J, Hartin RJ (1990) Quick transformation in Salmonella typhimurium LT2. Biotechniques 8:43–45

    CAS  PubMed  Google Scholar 

  26. Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23:267–274

    Article  CAS  PubMed  Google Scholar 

  27. Claret L, Calder SR, Higgins M, Hughes C (2003) Oligomerisation and activation of the FliI ATPase central to bacterial flagellum assembly. Mol Microbiol 48:1349–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minamino T, Kazetani K, Tahara A, Suzuki H, Furukawa Y, Kihara M, Namba K (2006) Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J Mol Biol 360:510–519

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported in part by JSPS KAKENHI Grant Numbers JP26293097 (to T.M.) and JP25000013 (to K.N.) and MEXT KAKENHI Grant Numbers JP25121718 and JP15H01640 (to T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Minamino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Minamino, T., Kinoshita, M., Namba, K. (2017). Fuel of the Bacterial Flagellar Type III Protein Export Apparatus. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics