Skip to main content

Stoichiometry and Turnover of the Stator and Rotor

  • Protocol
  • First Online:
The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

Abstract

Fluorescence imaging techniques using green fluorescent protein (GFP) and related fluorescent proteins are utilized to monitor and analyze a wide range of biological processes in living cells. Stepwise photobleaching experiments can determine the stoichiometry of protein complexes. Fluorescence recovery after photobleaching (FRAP) experiments can reveal in vivo dynamics of biomolecules. In this chapter, we describe methods to detect the subcellular localization, stoichiometry, and turnovers of stator and rotor components of the Salmonella flagellar motor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  CAS  PubMed  Google Scholar 

  2. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    Article  CAS  PubMed  Google Scholar 

  3. Minamino T, Imada K, Namba K (2008) Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18:693–701

    Article  CAS  PubMed  Google Scholar 

  4. Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132

    Article  CAS  PubMed  Google Scholar 

  5. Morimoto YV, Minamino T (2014) Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 4:217–234

    Article  PubMed  PubMed Central  Google Scholar 

  6. Minamino T, Imada K (2015) The bacterial flagellar motor and its str diversity. Trends Microbiol 23:267–274

    Article  CAS  PubMed  Google Scholar 

  7. Morimoto YV, Nakamura S, Kami-ike N, Namba K, Minamino T (2010) Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol Microbiol 78:1117–1129

    Article  CAS  PubMed  Google Scholar 

  8. Morimoto YV, Nakamura S, Hiraoka KD, Namba K, Minamino T (2013) Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. J Bacteriol 195:474–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kojima S, Nonoyama N, Takekawa N, Fukuoka H, Homma M (2011) Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na+-driven flagella of Vibrio alginolyticus. J Mol Biol 414:62–74

    Article  CAS  PubMed  Google Scholar 

  10. Takekawa N, Kojima S, Homma M (2014) Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. J Bacteriol 196:1377–1385

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    Article  CAS  PubMed  Google Scholar 

  12. Tipping MJ, Steel BC, Delalez NJ, Berry RM, Armitage JP (2013) Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol Microbiol 87:338–347

    Article  CAS  PubMed  Google Scholar 

  13. Lele PP, Hosu BG, Berg HC (2013) Dynamics of mechanosensing in the bacterial flagellar motor. Proc Natl Acad Sci U S A 110:11839–11844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tipping MJ, Delalez NJ, Lim R, Berry RM, Armitage JP (2013) Load-dependent assembly of the bacterial flagellar motor. mBio 24:e00551-13

    Google Scholar 

  15. Castillo DJ, Nakamura S, Morimoto YV, Che YS, Kamiike N, Kudo S, Minamino T, Namba K (2013) The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Biophysics 9:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Che YS, Nakamura S, Morimoto YV, Kami-ike N, Namba K, Minamino T (2014) Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor. Mol Microbiol 91:175–184

    Article  CAS  PubMed  Google Scholar 

  17. Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishijima A (2010) Exchange of rotor components in functioning bacterial flagellar motor. Biochem Biophys Res Commun 394:130–135

    Article  CAS  PubMed  Google Scholar 

  18. Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, Berry RM, Leake MC, Armitage JP (2010) Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci U S A 107:11347–11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan J, Branch RW, Hosu BG, Berg HC (2012) Adaptation at the output of the chemotaxis signalling pathway. Nature 484:233–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lele PP, Branch RW, Nathan VS, Berg HC (2012) Mechanism for adaptive remodeling of the bacterial flagellar switch. Proc Natl Acad Sci U S A 109:20018–20022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Delalez NJ, Berry RM, Armitage JP (2014) Stoichiometry and turnover of the bacterial flagellar switch protein FliN. mBio 5:e01216-14

    Article  PubMed  PubMed Central  Google Scholar 

  22. Branch RW, Sayegh MN, Shen C, Nathan VS, Berg HC (2014) Adaptive remodelling by FliN in the bacterial rotary motor. J Mol Biol 426:3314–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamaguchi S, Fujita H, Sugata K, Taira T, Iino T (1984) Genetic analysis of H2, the structural gene for phase-2 flagellin in Salmonella. J Gen Microbiol 130:255–265

    CAS  PubMed  Google Scholar 

  24. Morimoto YV, Ito M, Hiraoka KD, Che YS, Bai F, Kami-Ike N, Namba K, Minamino T (2014) Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Mol Microbiol 91:1214–1226

    Article  CAS  PubMed  Google Scholar 

  25. Bai F, Morimoto YV, Yoshimura SD, Hara N, Kami-Ike N, Namba K, Minamino T (2014) Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Sci Rep 4:6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakamura S, Kami-ike N, Yokota JP, Minamino T, Namba K (2010) Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor. Proc Natl Acad Sci U S A 107:17616–17620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919

    Article  CAS  PubMed  Google Scholar 

  28. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Keiichi Namba, Nobunori Kami-ike, and Masahiro Ueda for continuous support and encouragement. This research has been supported in part by JSPS KAKENHI Grant Numbers JP15K14498 and JP15H05593 (to Y.V.M.) and JP26293097 (to T.M.) and MEXT KAKENHI Grant Numbers JP15H01335 (to Y.V.M.) and JP25121718 (to T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke V. Morimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Morimoto, Y.V., Minamino, T. (2017). Stoichiometry and Turnover of the Stator and Rotor. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics