Skip to main content

Direct Imaging of Intracellular Signaling Molecule Responsible for the Bacterial Chemotaxis

  • Protocol
  • First Online:
Book cover The Bacterial Flagellum

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1593))

  • 1452 Accesses

Abstract

To elucidate the mechanisms by which cells respond to extracellular stimuli, the behavior of intracellular signaling proteins in a single cell should be directly examined, while simultaneously recording the cellular response. In Escherichia coli, an extracellular chemotactic stimulus is thought to induce a switch in the rotational direction of the flagellar motor, elicited by the binding and dissociation of the phosphorylated form of CheY (CheY-P) to and from the motor. We recently provided direct evidence for the binding of CheY-P to a functioning flagellar motor in live cells. Here, we describe the method for simultaneously measuring the fluorescent signal of the CheY-enhanced green fluorescent protein fusion protein (CheY-EGFP) and the rotational switching of the flagellar motor. By performing fluorescence and bright-field microscopy simultaneously, the rotational switch of the flagellar motor was shown to be induced by the binding and dissociation of CheY-P, and the number of CheY-P molecules bound to the motor was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  CAS  PubMed  Google Scholar 

  2. Stewart RC (1997) Kinetic characterization of phosphotransfer between CheA and CheY in the bacterial chemotaxis signal transduction pathway. Biochemistry 36:2030–2040

    Article  CAS  PubMed  Google Scholar 

  3. Sourjik V, Berg HC (2002) Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 99:12669–12674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bren A, Eisenbach M (1998) The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J Mol Biol 278:507–514

    Article  CAS  PubMed  Google Scholar 

  5. Welch M, Oosawa K, Aizawa S, Eisenbach M (1993) Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci U S A 90:8787–8791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fukuoka H, Sagawa T, Inoue Y, Takahashi H, Ishijima A (2014) Direct imaging of intracellular signaling components that regulate bacterial chemotaxis. Sci Signal 7:ra32

    Article  PubMed  Google Scholar 

  7. Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235:47–53

    Article  CAS  PubMed  Google Scholar 

  8. Macnab R (1996) Flagella and motility. In: Neidhardt FC (ed) Escherichia coli and Salmonella. American Society for Microbiology, Washington, DC, pp 123–145

    Google Scholar 

  9. Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishijima A (2010) Exchange of rotor components in functioning bacterial flagellar motor. Biochem Biophys Res Commun 394:130–135

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki H, Yonekura K, Namba K (2004) Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J Mol Biol 337:105–113

    Article  CAS  PubMed  Google Scholar 

  11. Thomas DR, Francis NR, Xu C, DeRosier DJ (2006) The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 188:7039–7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, Berry RM, Leake MC, Armitage JP (2010) Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci U S A 107:11347–11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee SH, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci U S A 109:17436–17441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parkinson JS, Houts SE (1982) Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J Bacteriol 151:106–113

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ryu WS, Berry RM, Berg HC (2000) Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403:444–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank A. Ishijima (Osaka University) for critical reading and useful discussions in this manuscript. This work was supported by Grants-in-Aid for Scientific Research from MEXT KAKENHI JP23115004 (to A.I.), and from JSPS KAKENHI JP26440073 (to H.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Fukuoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fukuoka, H. (2017). Direct Imaging of Intracellular Signaling Molecule Responsible for the Bacterial Chemotaxis. In: Minamino, T., Namba, K. (eds) The Bacterial Flagellum. Methods in Molecular Biology, vol 1593. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6927-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6927-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6926-5

  • Online ISBN: 978-1-4939-6927-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics