Skip to main content

Quantitative Co-Localization and Pattern Analysis of Endo-Lysosomal Cargo in Subcellular Image Cytometry and Validation on Synthetic Image Sets

  • Protocol
  • First Online:
Lysosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1594))

Abstract

Late endosomes and lysosomes (LE/LYSs) play a central role in trafficking of endocytic cargo, secretion of exosomes, and hydrolysis of ingested proteins and lipids. Failure in such processes can lead to lysosomal storage disorders in which a particular metabolite accumulates within LE/LYSs. Analysis of endocytic trafficking relies heavily on quantitative fluorescence microscopy, but evaluation of the huge image data sets is challenging and demands computer-assisted statistical tools. Here, we describe how to use SpatTrack (www.sdu.dk/bmb/spattrack), an imaging toolbox, which we developed for quantification of the distribution and dynamics of endo-lysosomal cargo from fluorescence images of living cells. First, we explain how to analyze experimental images of endocytic processes in Niemann Pick C2 disease fibroblasts using SpatTrack. We demonstrate how to quantify the location of the sterol-binding protein NPC2 in LE/LYSs relative to cholesterol -rich lysosomal storage organelles (LSOs) stained with filipin. Second, we show how to simulate realistic vesicle patterns in the cell geometry using Markov Chain Monte Carlo and suitable inter-vesicle and cell-vesicle interaction potentials. Finally, we use such synthetic vesicle patterns as “ground truth” for validation of two-channel analysis tools in SpatTrack, revealing their high reliability. An improved version of SpatTrack for microscopy-based quantification of cargo transport through the endo-lysosomal system accompanies this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukherjee S, Maxfield FR (2004) Lipid and cholesterol trafficking in NPC. Biochim Biophys Acta 1685:28–37

    Article  CAS  PubMed  Google Scholar 

  2. Storch J (2009) Niemann-Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim Biophys Acta 1791(7):671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lloyd-Evans E, Platt FM (2010) Lipids on trial: the search for the offending metabolite in Niemann Pick type C disease. Traffic 11:419–428

    Article  CAS  PubMed  Google Scholar 

  4. Yamashiro DJ, Tycko B, Fluss SR, Maxfield FR (1984) Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37:789–800

    Article  CAS  PubMed  Google Scholar 

  5. Lin SX, Gundersen GG, Maxfield FR (2002) Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol Biol Cell 13(1):96–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennett EM, Lin SX, Towler MC, Maxfield FR, Brodsky FM (2001) Clathrin hub expression affects early endosome distribution with minimal impact on receptor sorting and recycling. Mol Biol Cell 12(9):2790–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dunn KW, McGraw TE, Maxfield FR (1989) Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J Cell Biol 109:3303–3314

    Article  CAS  PubMed  Google Scholar 

  8. Traer CJ, Rutherford AC, Palmer KJ, Wassmer T, Oakley J, Attar N et al (2007) SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat Cell Biol 9(12):1370–1380. doi:10.1038/ncb1656

    Article  CAS  PubMed  Google Scholar 

  9. Skanland SS, Walchli S, Brech A, Sandvig K (2009) SNX4 in complex with clathrin and dynein: implications for endosome movement. PLoS One 4(6):e5935. doi:10.1371/journal.pone.0005935

    Article  PubMed  PubMed Central  Google Scholar 

  10. Murray JW, Wolkoff AW (2003) Roles of the cytoskeleton and motor proteins in endocytic sorting. Adv Drug Deliv Rev 55:1385–1403

    Article  CAS  PubMed  Google Scholar 

  11. Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S et al (2011) Lysosomal positioning coordinates cellular nutrient responses. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nat Cell Biol 13(4):453–460. doi:10.1038/ncb2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: A key to lysosome biogenesis. Mol Biol Cell 11:467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, Janssen H et al (2009) Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol 185(7):1209–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganley IG, Pfeffer SR (2006) Cholesterol accumulation sequesters Rab9 and disrupts late endosome function in NPC1-deficient cells. J Biol Chem 281(26):17890–17899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neufeld EB, Wastney M, Patel S, Suresh S, Cooney AM, Dwyer NK et al (1999) The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem 274(14):9627–9635

    Article  CAS  PubMed  Google Scholar 

  16. Luzio JP, Bright NA, Pryor PR (2007) The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans 35(5):1088–1091

    Article  CAS  PubMed  Google Scholar 

  17. Johnson DE, Ostrowski P, Jaumouille V, Grinstein S (2016) The position of lysosomes within the cell determines their luminal pH. J Cell Biol 212(6):677–692. doi:10.1083/jcb.201507112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duan L, Che D, Zhang K, Ong Q, Guo S, Cui B (2015) Optogenetic control of molecular motors and organelle distributions in cells. Chem Biol 22(5):671–682. doi:10.1016/j.chembiol.2015.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC (2015) Optogenetic control of organelle transport and positioning. Nature 518(7537):111–114. doi:10.1038/nature14128

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. [Research Support, Non-U.S. Gov't]. J Microsc 224(Pt 3):213–232. doi:10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  21. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86(6):3993–4003. doi:10.1529/biophysj.103.038422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Steensel B, van Binnendijk EP, Hornsby CD, van der Voort HT, Krozowski ZS, de Kloet ER et al (1996) Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J Cell Sci 109(Pt 4):787–792

    PubMed  Google Scholar 

  23. Comeau JWD, Costantino S, Wiseman PW (2006) A guide to accurate fluorescence microscopy colocalization measurements. Biophys J 91:4611–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adler J, Parmryd I (2013) Colocalization analysis in fluorescence microscopy. Methods Mol Biol 931:97–109. doi:10.1007/978-1-62703-056-4_5

    Article  CAS  PubMed  Google Scholar 

  25. Landmann L (2002) Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J Microsc 208:134–147

    Article  CAS  PubMed  Google Scholar 

  26. Fletcher PA, Scriven DR, Schulson MN, Moore ED (2010) Multi-image colocalization and its statistical significance. Biophys J 99(6):1996–2005. doi:10.1016/j.bpj.2010.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adler J, Parmryd I (2010) Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry A 77(8):733–742. doi:10.1002/cyto.a.20896

    Article  PubMed  Google Scholar 

  28. Adler J, Parmryd I (2014) Quantifying colocalization: thresholding, void voxels and the H(coef). PLoS One 9(11):e111983. doi:10.1371/journal.pone.0111983

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF (2004) A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24(16):4070–4081. doi:10.1523/JNEUROSCI.0346-04.2004

    Article  CAS  PubMed  Google Scholar 

  30. Jaskolski F, Mulle C, Manzoni OJ (2005) An automated method to quantify and visualize colocalized fluorescent signals. J Neurosci Methods 146(1):42–49. doi:10.1016/j.jneumeth.2005.01.012

    Article  CAS  PubMed  Google Scholar 

  31. Lagache T, Sauvonnet N, Danglot L, Olivo-Marin JC (2015) Statistical analysis of molecule colocalization in bioimaging. Cytometry A 87(6):568–579. doi:10.1002/cyto.a.22629

    Article  PubMed  Google Scholar 

  32. Smal I, Loog M, Niessen W, Meijering E (2010) Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans Med Imaging 29(2):282–301. doi:10.1109/TMI.2009.2025127

    Article  PubMed  Google Scholar 

  33. Ruusuvuori P, Aijo T, Chowdhury S, Garmendia-Torres C, Selinummi J, Birbaumer M et al (2010) Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images. BMC Bioinformatics 11. doi:10.1186/1471-2105-11-248

  34. Woodcroft BJ, Hammond L, Stow JL, Hamilton NA (2009) Automated organelle-based colocalization in whole cell imaging. Cytometry A 75:941–950

    Article  PubMed  Google Scholar 

  35. Demandolx D, Davoust J (1997) Multicolour analysis and local image correlation in confocal microscopy. J Microsc (Oxford) 185:21–36. doi:10.1046/j.1365-2818.1997.1470704.x

    Article  Google Scholar 

  36. Morrison IEG, Karakikes I, Barber RE, Fernandez N, Cherry RJ (2003) Detecting and quantifying colocalization of cell surface molecules by single particle fluorescence imaging. Biophys J 85(6):4110–4121. doi:10.1016/S0006-3495(03)74823-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310. doi:10.1006/jcis.1996.0217

    Article  CAS  Google Scholar 

  38. Lund FW, Wüstner D (2013) A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility. J Microsc 252(2):169–188

    Article  CAS  PubMed  Google Scholar 

  39. Lund FW, Jensen MLV, Christensen T, Nielsen GK, Heegaard CW, Wüstner D (2014) SpatTrack, an imaging toolbox for analysis of endosome motility and distribution. Traffic 15(12):1406–1429

    Article  CAS  PubMed  Google Scholar 

  40. Saxton MJ (1983) Lateral diffusion in an archipelago. Biophys J 64:1766–1780

    Article  Google Scholar 

  41. Modzel M, Lund FW, Wüstner D (2016) Synthesis and live-cell imaging of fluorescent sterols for analysis of intracellular cholesterol transport. Methods Mol Biol (in press).

    Google Scholar 

  42. Zuiderveld K (1994) Contrast-limited adaptive histogram equalization. Graphics Gems IV:474–485

    Article  Google Scholar 

  43. Lachmanovich E, Shvartsman DE, Malka Y, Botvin C, Henis YI, Weiss AM (2003) Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies. J Microsc (Oxford) 212:122–131. doi:10.1046/j.1365-2818.2003.01239.x

    Article  CAS  Google Scholar 

  44. Ghaye J, De Micheli G, Carrara S (2012) Simulated biological cells for receptor counting in fluorescence imaging. BioNanoSci 2:94–103

    Article  Google Scholar 

  45. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  46. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press

    Google Scholar 

  47. Frenkel D (2004) Introduction to Monte Carlo Methods. In: Attig N, Binder K, Grubmüller H, Kremer K (eds) Computational soft matter: from synthetic polymers to proteins, vol 23. NIC Series, Lecture Notes, Jülich, pp 29–60

    Google Scholar 

  48. Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P et al (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18(4):1490–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V, Schönle A et al (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92(8):L67–L69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J (2007) Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A 104(44):17370–17375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  CAS  PubMed  Google Scholar 

  52. Pipalia NH, Huang A, Ralph H, Rujoi M, Maxfield FR (2006) Automated microscopy screening for compounds that partially revert cholesterol accumulation in Niemann-Pick C cells. J Lipid Res 47:284–301

    Article  CAS  PubMed  Google Scholar 

  53. Bartz F, Kern L, Erz D, Zhu M, Gilbert D, Meinhof T et al (2009) Identification of cholesterol-regulating genes by targeted RNAi screening. Cell Metab 10(1):63–75

    Article  CAS  PubMed  Google Scholar 

  54. Rosenbaum AI, Rujoi M, Huang AY, Du H, Grabowski GA, Maxfield FR (2009) Chemical screen to reduce sterol accumulation in Niemann-Pick C disease cells identifies novel lysosomal acid lipase inhibitors. Biochim Biophys Acta 1791(12):1155–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wehrmann ZT, Hulett TW, Huegel KL, Vaughan KT, Wiest O, Helquist P et al (2012) Quantitative comparison of the efficacy of various compounds in lowering intracellular cholesterol levels in Niemann-Pick type C fibroblasts. PLoS One 7(10):e48561. doi:10.1371/journal.pone.0048561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ishitsuka R, Saito T, Osada H, Ohno-Iwashita Y, Kobayashi T (2011) Fluorescence image screening for chemical compounds modifying cholesterol metabolism and distribution. J Lipid Res 52(11):2084–2094. doi:10.1194/jlr.D018184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shivanadan A, Radenovic A, Sbalzarini IF (2013) MosaicIA: an ImageJ/Fiji plugin for spatial pattern and interaction analysis. BMC Bioinformatics 14:349

    Article  Google Scholar 

  58. Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3(1):17–25. doi:10.1039/b307576c

    Article  CAS  PubMed  Google Scholar 

  59. Davies M (2014) Long-lived reactive species formed on proteins induce changes in protein and lipid turnover. Free Radic Biol Med 75(Suppl 1):S6–S7. doi:10.1016/j.freeradbiomed.2014.10.841

    Google Scholar 

  60. Larsen LB, Ravn P, Boisen A, Berglund L, Petersen TE (1997) Primary structure of EPV20, a secretory glycoprotein containing a previously uncharacterized type of domain. Eur J Biochem 243(1-2):437–441

    Article  CAS  PubMed  Google Scholar 

  61. Maxfield F, Wüstner D (2012) Analysis of cholesterol trafficking with fluorescent probes. Methods Cell Biol 108:367–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wustner D, Christensen T, Solanko LM, Sage D (2014) Photobleaching kinetics and time-integrated emission of fluorescent probes in cellular membranes. Molecules 19(8):11096–11130. doi:10.3390/molecules190811096

    Article  PubMed  Google Scholar 

  63. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783. doi:10.1016/s0006-3495(02)75618-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wüstner D, Solanko LM, Sokol E, Lund FW, Garvik O, Li Z et al (2011) Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol. Chem Phys Lipids 164(3):221–235

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wüstner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lund, F.W., Wüstner, D. (2017). Quantitative Co-Localization and Pattern Analysis of Endo-Lysosomal Cargo in Subcellular Image Cytometry and Validation on Synthetic Image Sets. In: Öllinger, K., Appelqvist, H. (eds) Lysosomes. Methods in Molecular Biology, vol 1594. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6934-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6934-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6932-6

  • Online ISBN: 978-1-4939-6934-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics