Skip to main content

Docking and Virtual Screening in Drug Discovery

  • Protocol
  • First Online:
Proteomics for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1647))

Abstract

Stages in a typical drug discovery organization include target selection, hit identification, lead optimization, preclinical and clinical studies. Hit identification and lead optimization are very much intertwined with computational modeling. Structure-based virtual screening (VS) has been a staple for more than a decade now in drug discovery with its underlying computational technique, docking, extensively studied. Depending on the objective, the parameters for VS may change, but the overall protocol is very straightforward. The idea behind VS is that a library of small compounds are docked into the binding pocket of a protein (e.g., receptor, enzyme), a number of solutions per molecule, among the top-ranked, are being returned, and a choice is made on the fraction of compounds to be moved forward for testing toward hit identification. The underlying principle of VS is that it differentiates between active and inactive compounds, thus reducing the number of molecules moving forward and possibly offering a complementary tool to high-throughput screening (HTS). Best practices in library selection, target preparation and refinement, criteria in selecting the most appropriate docking/scoring scheme, and a step-wise approach in performing Glide VS are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem Substance and Compound databases. Nucleic Acids Res 44(D1):D1202–D1213. doi:10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K, Dracheva S, Shoemaker BA, Bolton E, Gindulyte A, Bryant SH (2012) PubChem's BioAssay Database. Nucleic Acids Res 40(Database issue):D400–D412. doi:10.1093/nar/gkr1132

    Article  CAS  PubMed  Google Scholar 

  3. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107. doi:10.1093/nar/gkr777

    Article  CAS  PubMed  Google Scholar 

  4. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35(Database):D198–D201. doi:10.1093/nar/gkl999

    Article  CAS  PubMed  Google Scholar 

  5. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44(D1):D1045–D1053. doi:10.1093/nar/gkv1072

    Article  CAS  PubMed  Google Scholar 

  6. Nicola G, Liu T, Gilson MK (2012) Public domain databases for medicinal chemistry. J Med Chem 55(16):6987–7002. doi:10.1021/jm300501t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Irwin JJ, Shoichet BK (2005) ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182. doi:10.1021/ci049714+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768. doi:10.1021/ci3001277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sterling T, Irwin JJ (2015) ZINC 15--Ligand Discovery for Everyone. J Chem Inf Model 55(11):2324–2337. doi:10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):D901–D906. doi:10.1093/nar/gkm958

    Article  CAS  PubMed  Google Scholar 

  11. Pawson AJ, Sharman JL, Benson HE, Faccenda E, Alexander SP, Buneman OP, Davenport AP, McGrath JC, Peters JA, Southan C, Spedding M, Yu W, Harmar AJ, Nc I (2014) The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42(Database issue):D1098–D1106. doi:10.1093/nar/gkt1143

    Article  CAS  PubMed  Google Scholar 

  12. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249

    Article  CAS  PubMed  Google Scholar 

  13. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. doi:10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  14. Ebejer JP, Morris GM, Deane CM (2012) Freely available conformer generation methods: how good are they? J Chem Inf Model 52(5):1146–1158. doi:10.1021/ci2004658

    Article  CAS  PubMed  Google Scholar 

  15. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  PubMed  Google Scholar 

  17. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  PubMed  Google Scholar 

  18. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  PubMed  Google Scholar 

  19. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  PubMed  Google Scholar 

  20. Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JW, Taylor RD, Taylor R (2005) Modeling water molecules in protein-ligand docking using GOLD. J Med Chem 48(20):6504–6515

    Article  CAS  PubMed  Google Scholar 

  21. Ghersi D, Sanchez R (2011) Beyond structural genomics: computational approaches for the identification of ligand binding sites in protein structures. J Struct Funct Genomics 12(2):109–117. doi:10.1007/s10969-011-9110-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A (2014) Critical assessment of methods of protein structure prediction (CASP)--round x. Proteins 82(Suppl 2):1–6. doi:10.1002/prot.24452

    Article  CAS  PubMed  Google Scholar 

  23. Gaudreault F, Chartier M, Najmanovich R (2012) Side-chain rotamer changes upon ligand binding: common, crucial, correlate with entropy and rearrange hydrogen bonding. Bioinformatics 28(18):i423–i430. doi:10.1093/bioinformatics/bts395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kontoyianni M, Sokol GS, McClellan LM (2005) Evaluation of library ranking efficacy in virtual screening. J Comput Chem 26(1):11–22

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kontoyianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kontoyianni, M. (2017). Docking and Virtual Screening in Drug Discovery. In: Lazar, I., Kontoyianni, M., Lazar, A. (eds) Proteomics for Drug Discovery. Methods in Molecular Biology, vol 1647. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7201-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7201-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7200-5

  • Online ISBN: 978-1-4939-7201-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics