Skip to main content

Congo Red Stain Identifies Matrix Overproduction and Is an Indirect Measurement for c-di-GMP in Many Species of Bacteria

  • Protocol
  • First Online:
c-di-GMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

Congo red is a diazo textile dye that has been used to visualize the production of amyloid fibers for nearly a century. Microbiological applications were later developed, especially in identifying strains that produce amyloid appendages called curli and overexpressing polysaccharides in the biofilm matrix. The second messenger cyclic diguanylate (c-di-GMP) regulates the production of biofilm matrix polysaccharides, and therefore Congo red staining of samples can be utilized as an indirect measurement of elevated c-di-GMP production in bacteria. Congo red allows the identification of strains producing high c-di-GMP in an inexpensive, quantitative, and high-throughput manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steensma DP (2001) “Congo” red: out of Africa? Arch Pathol Lab Med 125:250–252

    CAS  PubMed  Google Scholar 

  2. Bennhold H (1922) Eine spezifische Amyloidfärbung mit Kongorot [Specific staining of amyloid with Congo red]. Münch Med Wochenschr 69:1537–1538

    Google Scholar 

  3. Elghetany MT, Saleem A, Barr K (1989) The congo red stain revisited. Ann Clin Lab Sci 19:190–195

    CAS  PubMed  Google Scholar 

  4. Bély M, Makovitzky J (2006) Sensitivity and specificity of Congo red staining according to Romhányi. Comparison with Puchtler“s or Bennhold”s methods. Acta Histochem 108:175–180

    Article  PubMed  Google Scholar 

  5. HOYER BH (1956) A procedure for counting leptospirae based upon the Congo red negative stain. J Bacteriol 72:719–720

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Olsén A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655

    Article  PubMed  Google Scholar 

  7. Surgalla MJ, Beesley ED (1969) Congo red-agar plating medium for detecting pigmentation in Pasteurella Pestis. Appl Microbiol 18:834–837

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Surgalla MJ, Beesley ED (1971) Infectivity and virulence of nonpesticinogenic Pasteurella Pestis. Infect Immun 4:416–418

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Payne SM, Finkelstein RA (1977) Detection and differentiation of iron-responsive avirulent mutants on Congo red agar. Infect Immun 18:94–98

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Qadri F, Hossain SA, Ciznár I et al (1988) Congo red binding and salt aggregation as indicators of virulence in Shigella species. J Clin Microbiol 26:1343–1348

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sankaran K, Ramachandran V, Subrahmanyam YV et al (1989) Congo red-mediated regulation of levels of Shigella flexneri 2a membrane proteins. Infect Immun 57:2364–2371

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zogaj X, Nimtz M, Rohde M et al (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    Article  CAS  PubMed  Google Scholar 

  13. Friedman L, Kolter R (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas Aeruginosa biofilm matrix. J Bacteriol 186:4457–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma L, Jackson KD, Landry RM et al (2006) Analysis of Pseudomonas Aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure post attachment. J Bacteriol 188:8213–8221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ben Abdallah F, Chaieb K, Zmantar T et al (2009) Adherence assays and slime production of Vibrio alginolyticus and Vibrio Parahaemolyticus. Braz J Microbiol 40:394–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Colvin KM, Irie Y, Tart CS et al (2012) The Pel and Psl polysaccharides provide Pseudomonas Aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14:1913–1928

    Article  CAS  PubMed  Google Scholar 

  17. Kaiser TDL, Pereira EM, Dos Santos KRN et al (2013) Modification of the Congo red agar method to detect biofilm production by Staphylococcus Epidermidis. Diagn Microbiol Infect Dis 75:235–239

    Article  CAS  PubMed  Google Scholar 

  18. Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14,422–14,427

    Article  CAS  Google Scholar 

  19. Christen B, Christen M, Paul R et al (2006) Allosteric control of cyclic di-GMP signaling. J Biol Chem 281:32,015–32,024

    Article  CAS  Google Scholar 

  20. Antoniani D, Bocci P, Maciag A et al (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85:1095–1104

    Article  CAS  PubMed  Google Scholar 

  21. Merritt JH, Ha D-G, Cowles KN et al (2010) Specific control of Pseudomonas Aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio 1:e00183–10–e00183–18

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jones CJ, Newsom D, Kelly B et al (2014) ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas Aeruginosa. PLoS Pathog 10:e1003984

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kuchma SL, Delalez NJ, Filkins LM et al (2015) Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas Aeruginosa PA14 requires the MotAB stator. J Bacteriol 197:420–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirisits MJ, Prost L, Starkey M et al (2005) Characterization of colony morphology variants isolated from Pseudomonas Aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Starkey M, Hickman JH, Ma L et al (2009) Pseudomonas Aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191:3492–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haussler S (2003) Highly adherent small-colony variants of Pseudomonas Aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52:295–301

    Article  PubMed  Google Scholar 

  27. Römling U, Bian Z, Hammar M et al (1998) Curli fibers are highly conserved between salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731

    PubMed  PubMed Central  Google Scholar 

  28. Bokranz W, Wang X, Tschäpe H et al (2005) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54:1171–1182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Wozniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jones, C.J., Wozniak, D.J. (2017). Congo Red Stain Identifies Matrix Overproduction and Is an Indirect Measurement for c-di-GMP in Many Species of Bacteria. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics