Skip to main content

Analysis of Cellular Prion Protein Endoproteolytic Processing

  • Protocol
  • First Online:
Book cover Prions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1658))

Abstract

Like numerous proteins of various structural and functional classes, the glycosylphosphatidylinositol (GPI)-anchored cellular prion protein (PrPC) has been recognized to undergo endoproteolytic processing for decades, a phenomenon observed in various cultured cell lines, as well as human and several animal tissue extracts. Despite this, the physiological significance of PrPC proteolytic cleavage has not yet been entirely elucidated. Experimental evidence suggests independent normal biological functions of the full-length and truncated PrPC species, as well as probable links of endoproteolysis to prion disease transmission susceptibility, pathogenesis, and toxicity. The accurate characterization of constitutive PrPC processing, through the method outlined in this chapter, is therefore an important tool in order to investigate the biological relevance of the alternative cleavage events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawson VA, Collins SJ, Masters CL et al (2005) Prion protein glycosylation. J Neurochem 93(4):793–801

    Article  CAS  PubMed  Google Scholar 

  2. Lewis V (2011) Proteolytic processing of the prion protein. In: Collins SJ, Lawson VA (eds) The cellular and molecular biology of prion disease. Research Signpost, Kerala, India

    Google Scholar 

  3. Ehlers MR, Riordan JF (1991) Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry 30(42):10065–10074

    Article  CAS  PubMed  Google Scholar 

  4. Haigh CL, Collins SJ (2016) Endoproteolytic cleavage as a molecular switch regulating and diversifying prion protein function. Neural Regen Res 11(2):238–239

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lewis V, Hill AF, Haigh CL et al (2009) Increased proportions of C1 truncated prion protein protect against cellular M1000 prion infection. J Neuropathol Exp Neurol 68(10):1125–1135

    Article  CAS  PubMed  Google Scholar 

  6. Jimenez-Huete A, Lievens PM, Vidal R et al (1998) Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol 153(5):1561–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuczius T, Koch R, Keyvani K et al (2007) Regional and phenotype heterogeneity of cellular prion proteins in the human brain. Eur J Neurosci 25(9):2649–2655

    Article  PubMed  Google Scholar 

  8. Lewis V, Johanssen VA, Crouch PJ et al (2016) Prion protein “gamma-cleavage”: characterizing a novel endoproteolytic processing event. Cell Mol Life Sci 73(3):667–683

    Article  CAS  PubMed  Google Scholar 

  9. Chen SG, Teplow DB, Parchi P et al (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270(32):19173–19180

    Article  CAS  PubMed  Google Scholar 

  10. Vincent B, Paitel E, Saftig P et al (2001) The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem 276(41):37743–37746

    CAS  PubMed  Google Scholar 

  11. Taylor DR, Parkin ET, Cocklin SL et al (2009) Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem 284(34):22590–22600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cisse MA, Sunyach C, Lefranc-Jullien S et al (2005) The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J Biol Chem 280(49):40624–40631

    Article  CAS  PubMed  Google Scholar 

  13. Endres K, Mitteregger G, Kojro E et al (2009) Influence of ADAM10 on prion protein processing and scrapie infectiosity in vivo. Neurobiol Dis 36(2):233–241

    Article  CAS  PubMed  Google Scholar 

  14. McDonald AJ, Dibble JP, Evans EG et al (2014) A new paradigm for enzymatic control of alpha-cleavage and beta-cleavage of the prion protein. J Biol Chem 289(2):803–813

    Article  CAS  PubMed  Google Scholar 

  15. Pan T, Wong P, Chang B et al (2005) Biochemical fingerprints of prion infection: accumulations of aberrant full-length and N-terminally truncated PrP species are common features in mouse prion disease. J Virol 79(2):934–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mange A, Beranger F, Peoc'h K et al (2004) Alpha- and beta- cleavages of the amino-terminus of the cellular prion protein. Biol Cell 96(2):125–132

    Article  CAS  PubMed  Google Scholar 

  17. Pan T, Li R, Wong BS et al (2002) Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms. J Neurochem 81(5):1092–1101

    Article  CAS  PubMed  Google Scholar 

  18. Watt NT, Taylor DR, Gillott A et al (2005) Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. J Biol Chem 280(43):35914–35921

    Article  CAS  PubMed  Google Scholar 

  19. McMahon HE, Mange A, Nishida N et al (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem 276(3):2286–2291

    Article  CAS  PubMed  Google Scholar 

  20. Pastore A, Zagari A (2007) A structural overview of the vertebrate prion proteins. Prion 1(3):185–197

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanaani J, Prusiner SB, Diacovo J et al (2005) Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem 95(5):1373–1386

    Article  CAS  PubMed  Google Scholar 

  22. Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role of N-terminal residues. J Biol Chem 285(34):26377–26383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. You H, Tsutsui S, Hameed S et al (2012) Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A 109(5):1737–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haigh CL, Drew SC, Boland MP et al (2009) Dominant roles of the polybasic proline motif and copper in the PrP23-89-mediated stress protection response. J Cell Sci 122(Pt 10):1518–1528

    Article  CAS  PubMed  Google Scholar 

  25. Haigh CL, Lewis VA, Vella LJ et al (2009) PrPC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site. Cell Res 19(9):1062–1078

    Article  CAS  PubMed  Google Scholar 

  26. Guillot-Sestier MV, Sunyach C, Druon C et al (2009) The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J Biol Chem 284(51):35973–35986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guillot-Sestier MV, Sunyach C, Ferreira ST et al (2012) α-Secretase-derived fragment of cellular prion, N1, protects against monomeric and oligomeric amyloid β (Aβ)-associated cell death. J Biol Chem 287(7):5021–5032

    Article  CAS  PubMed  Google Scholar 

  28. Sunyach C, Cisse MA, da Costa CA et al (2007) The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J Biol Chem 282(3):1956–1963

    Article  CAS  PubMed  Google Scholar 

  29. Shmerling D, Hegyi I, Fischer M et al (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93(2):203–214

    Article  CAS  PubMed  Google Scholar 

  30. Sakaguchi S, Katamine S, Shigematsu K et al (1995) Accumulation of proteinase K-resistant prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob disease agent. J Virol 69(12):7586–7592

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bueler H, Aguzzi A, Sailer A et al (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347

    Article  CAS  PubMed  Google Scholar 

  32. Mallucci G, Dickinson A, Linehan J et al (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302(5646):871–874

    Article  CAS  PubMed  Google Scholar 

  33. Fischer M, Rulicke T, Raeber A et al (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15(6):1255–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lawson VA, Priola SA, Wehrly K et al (2001) N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. J Biol Chem 276(38):35265–35271

    Article  CAS  PubMed  Google Scholar 

  35. Westergard L, Turnbaugh JA, Harris DA (2011) A naturally occurring C-terminal fragment of the prion protein (PrP) delays disease and acts as a dominant-negative inhibitor of PrPSc formation. J Biol Chem 286(51):44234–44242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johanssen VA, Johanssen T, Masters CL et al (2014) C-terminal peptides modelling constitutive PrPC processing demonstrate ameliorated toxicity predisposition consequent to alpha-cleavage. Biochem J 459(1):103–115

    Article  CAS  PubMed  Google Scholar 

  37. Turnbaugh JA, Unterberger U, Saa P et al (2012) The N-terminal, polybasic region of PrP(C) dictates the efficiency of prion propagation by binding to PrP(Sc). J Neurosci 32(26):8817–8830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rutishauser D, Mertz KD, Moos R et al (2009) The comprehensive native interactome of a fully functional tagged prion protein. PLoS One 4(2):e4446

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lawson VA, Vella LJ, Stewart JD et al (2008) Mouse-adapted sporadic human Creutzfeldt-Jakob disease prions propagate in cell culture. Int J Biochem Cell Biol 40(12):2793–2801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Associate Professor Victoria Lawson for the 03R19 and 03R22 polyclonal antibodies, as well as the original RK13 cell line. This work was supported by an Australian Government National Health and Medical Research Council (NHMRC) program grant (#628946) and Training Fellowship (#567123) and a University of Melbourne Early Career Researcher Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lewis, V. (2017). Analysis of Cellular Prion Protein Endoproteolytic Processing. In: Lawson, V. (eds) Prions. Methods in Molecular Biology, vol 1658. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7244-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7244-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7242-5

  • Online ISBN: 978-1-4939-7244-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics