Skip to main content

In Vivo-Near Infrared Imaging of Neurodegeneration

  • Protocol
  • First Online:
Prions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1658))

  • 2485 Accesses

Abstract

In vivo near-infrared (NIR) imaging of molecular processes at the preclinical stage promises to provide more valuable mechanistic information about pathological pathways involved in neurodegeneration. NIR imaging has the potential to improve in vivo therapeutic screening protocols by enabling noninvasive monitoring of presymptomatic responses to treatment. We have developed new NIR fluorescent contrast agents conjugated to markers of cell death, and using these agents we have identified molecular pathways associated with prion-induced neurodegeneration and determined the optimal window for meaningful therapeutic intervention in prion disease. This chapter provides a description of the synthesis and purification of our NIR cell Death (NIRD) contrast agent and the application of in vivo NIRD (iNIRD) imaging to a prion model of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saidlitz P, Voisin T, Vellas B et al (2014) Amyloid imaging in Alzheimer's disease: a literature review. J Nutr Health Aging 18:723–740

    Article  CAS  PubMed  Google Scholar 

  2. Jamieson E, Jeffrey M, Ironside JW, Fraser JR (2001) Activation of Fas and caspase 3 precedes PrP accumulation in 87V scrapie. Neuroreport 12:3567–3572

    Article  CAS  PubMed  Google Scholar 

  3. de Calignon A, Fox L, Pitstick R et al (2010) Caspase activation precedes and leads to tangles. Nature 464:1201–1204

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lawson VA, Haigh CL, Roberts B et al (2010) Near infra-red fluorescence imaging of apoptotic neuronal cell death in a live animal model of prion disease. ACS Chem Neurosci 1:720–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    Article  CAS  PubMed  Google Scholar 

  6. Liberski PP, Sikorska B, Bratosiewicz-Wasik J et al (2004) Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy. Int J Biochem Cell Biol 36:2473–2490

    Article  CAS  PubMed  Google Scholar 

  7. Giese A, Groschup MH, Hess B, Kretzschmar HA (1995) Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 5:213–221

    Article  CAS  PubMed  Google Scholar 

  8. Jamieson E, Jeffrey M, Ironside JW, Fraser JR (2001) Apoptosis and dendritic dysfunction precede prion protein accumulation in 87V scrapie. Neuroreport 12:2147–2153

    Article  CAS  PubMed  Google Scholar 

  9. Lucassen PJ, Williams A, Chung WC, Fraser H (1995) Detection of apoptosis in murine scrapie. Neurosci Lett 198:185–188

    Article  CAS  PubMed  Google Scholar 

  10. Jesionek-Kupnicka D, Buczynski J, Kordek R et al (1997) Programmed cell death (apoptosis) in Alzheimer's disease and Creutzfeldt-Jakob disease. Folia Neuropathol 35:233–235

    CAS  PubMed  Google Scholar 

  11. Puig B, Ferrer I (2001) Cell death signaling in the cerebellum in Creutzfeldt-Jakob disease. Acta Neuropathol 102:207–215

    CAS  PubMed  Google Scholar 

  12. Hetz C, Russelakis-Carneiro M, Maundrell K et al (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22:5435–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haigh CL, Lawson VA, Drew SC (2014) Blood vessel cell death during prion disease: implications for disease management and infection control. Exp Hematol 42:939–940

    Article  PubMed  Google Scholar 

  14. Drew SC, Haigh CL, Klemm HMJ et al (2011) Optical imaging of apoptosis in the brain and peripheral organs of prion-infected mice. J Neuropathol Exp Neurol 11:143–150

    Article  Google Scholar 

  15. Talanian RV, Quinlan C, Trautz S et al (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682

    Article  CAS  PubMed  Google Scholar 

  16. Van Noorden CJ (2001) The history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition. Acta Histochem 103:241–251

    Article  PubMed  Google Scholar 

  17. Hawrysz DJ, Sevick-Muraca EM (2000) Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2:388–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496

    CAS  PubMed  Google Scholar 

  19. Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111

    Article  CAS  PubMed  Google Scholar 

  20. Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730

    Article  CAS  PubMed  Google Scholar 

  21. Weissleder R, Pittet M (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raymond SB, Skoch J, Hills ID et al (2008) Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology. Eur J Nucl Med Mol Imaging 35(Suppl 1):S93–S98

    Article  PubMed  Google Scholar 

  23. Ran C, Xu X, Raymond S et al (2009) Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc 131:15257–15261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mattson MP, Duan W (1999) “Apoptotic” biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 58:152–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

VAL, CLH, and SCD were funded by project grant (APP1044264) administered by the National Health and Medical Research Council (NHMRC) of Australia, and a grant from VCF-George Perry Fund, the Arthur and Mary Osborn Charitable Trust, and the William Buckland Foundation, managed by ANZ Trustees. SCD was supported by a Fellowship (FT110100199) administered by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon C. Drew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lawson, V.A., Tumpach, C., Haigh, C.L., Drew, S.C. (2017). In Vivo-Near Infrared Imaging of Neurodegeneration. In: Lawson, V. (eds) Prions. Methods in Molecular Biology, vol 1658. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7244-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7244-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7242-5

  • Online ISBN: 978-1-4939-7244-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics