Skip to main content
Book cover

Prions pp 23–26Cite as

Method for Folding of Recombinant Prion Protein to Soluble β-Sheet Secondary Structure

  • Protocol
  • First Online:
  • 2467 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1658))

Abstract

A key event in the pathogenesis of prion diseases is the change in structure of the normal cellular form of the prion protein from a predominantly α-helix form to the β-sheet-rich prion protein found in disease-associated tissue. To allow more detailed structural research into PrP misfolding, it is necessary to have techniques which enable enrichment of the β-sheet content in recombinant PrP.

This method describes the procedure for inducing β-folding of recombinant PrP to resemble a disease-associated structure and ultimately produce soluble β-folded recombinant PrP.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bolton D, McKinley M, Prusiner S (1982) Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311

    Article  CAS  PubMed  Google Scholar 

  2. McKinley M, Bolton D, Prusiner S (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35:57–62

    Article  CAS  PubMed  Google Scholar 

  3. Diringer H, Hilmert H, Simon D et al (1983) Towards purification of the scrapie agent. Eur J Biochem 134:555–560

    Article  CAS  PubMed  Google Scholar 

  4. Prusiner S, McKinley M, Bowman K et al (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358

    Article  CAS  PubMed  Google Scholar 

  5. De Armond S, McKinley M, Barry R et al (1985) Identification of prion amyloid filaments in scrapie-infected brain. Cell 41:221–235

    Article  Google Scholar 

  6. Gabizon R, McKinley M, Groth D et al (1988) Immunoaffinity purification and neutralization of scrapie prion infectivity. Proc Natl Acad Sci U S A 85:667–621

    Google Scholar 

  7. Caughey B, Dong A, Bhat K et al (1991) Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemist 30:7672–7680

    Article  CAS  Google Scholar 

  8. Pan K, Baldwin M, Nguyen J et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90:10962–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Safar J, Roller P, Gajdusek D et al (1993) Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J Biol Chem 286:20276–20284

    Google Scholar 

  10. Safar J, Roller P, Gajdusek D et al (1993) Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci 2:2206–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jackson G, Hosszu L, Power A et al (1999) Reversible conversion of monomeric human prion protein between native and fibrillogenic conformations. Science 283:1935–1937

    Article  CAS  PubMed  Google Scholar 

  12. Coleman B, Nisbet R, Han S et al (2009) Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence. Biochem Biophys Res Commun 380:564–568

    Article  CAS  PubMed  Google Scholar 

  13. Jackson G, Hill A, Joseph C et al (1999) Multiple folding pathways for heterologously expressed human prion protein. Biochim Biophys Acta 1431:1–13

    Article  CAS  PubMed  Google Scholar 

  14. Legname G, Baskakov I, Nguyen H et al (2004) Synthetic mammalian prions. Science 305:673–676

    Article  CAS  PubMed  Google Scholar 

  15. Baskakov I, Legname G, Prusiner S et al (2001) Folding of prion protein to its native alpha-helical conformation is under kinetic control. J Biol Chem 276:19687–19690

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Ellett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ellett, L.J. (2017). Method for Folding of Recombinant Prion Protein to Soluble β-Sheet Secondary Structure. In: Lawson, V. (eds) Prions. Methods in Molecular Biology, vol 1658. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7244-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7244-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7242-5

  • Online ISBN: 978-1-4939-7244-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics