Skip to main content

Quantitative DNA Methylation Analysis at Single-Nucleotide Resolution by Pyrosequencing®

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1708))

Abstract

Many protocols for gene-specific DNA methylation analysis are either labor intensive, not quantitative and/or limited to the measurement of the methylation status of only one or very few CpG positions. Pyrosequencing is a real-time sequencing technology that overcomes these limitations. After bisulfite modification of genomic DNA, a region of interest is amplified by PCR with one of the two primers being biotinylated. The PCR generated template is rendered single-stranded and a pyrosequencing primer is annealed to analyze quantitatively cytosine methylation. In comparative studies, pyrosequencing has been shown to be among the most accurate and reproducible technologies for locus-specific DNA methylation analyses and has become a widely used tool for the validation of DNA methylation changes identified in genome-wide studies as well as for locus-specific analyses with clinical impact such as methylation analysis of the MGMT promoter. Advantages of the Pyrosequencing technology are the ease of its implementation, the high quality and the quantitative nature of the results, and its ability to identify differentially methylated positions in close proximity.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281(363):365

    Google Scholar 

  2. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11

    Article  CAS  PubMed  Google Scholar 

  3. Nyren P (2015) The history of pyrosequencing((R)). Methods Mol Biol 1315:3–15

    Article  PubMed  Google Scholar 

  4. Ahmadian A, Ehn M, Hober S (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363:83–94

    Article  CAS  PubMed  Google Scholar 

  5. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lehmann U, Tost J (2015) Pyrosequencing-methods and protocols, Methods Mol Biol, vol 1315. Humana Press, Springer, New York

    Book  Google Scholar 

  7. Wasson J (2007) Allele quantification and DNA pooling methods. Methods Mol Biol 373:63–74

    CAS  PubMed  Google Scholar 

  8. Pielberg G, Andersson L (2007) Gene copy number detection in animal studies. Methods Mol Biol 373:147–156

    CAS  PubMed  Google Scholar 

  9. Deutsch S, Choudhury U, Merla G et al (2004) Detection of aneuploidies by paralogous sequence quantification. J Med Genet 41:908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sefrioui D, Mauger F, Leclere L et al (2017) Comparison of the quantification of KRAS mutations by digital PCR and E-ice-COLD-PCR in circulating-cell-free DNA from metastatic colorectal cancer patients. Clin Chim Acta 465:1–4

    Article  CAS  PubMed  Google Scholar 

  11. Uhlmann K, Brinckmann A, Toliat MR et al (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis. Electrophoresis 23:4072–4079

    Article  CAS  PubMed  Google Scholar 

  12. Colella S, Shen L, Baggerly KA et al (2003) Sensitive and quantitative universal pyrosequencing methylation analysis of CpG sites. Biotechniques 35:146–150

    CAS  PubMed  Google Scholar 

  13. Tost J, Dunker J, Gut IG (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by pyrosequencing. Biotechniques 35:152–156

    CAS  PubMed  Google Scholar 

  14. Dupont JM, Tost J, Jammes H et al (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127

    Article  CAS  PubMed  Google Scholar 

  15. Tost J, Gut IG (2007) Analysis of gene-specific DNA methylation patterns by pyrosequencing technology. Methods Mol Biol 373:89–102

    CAS  PubMed  Google Scholar 

  16. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alnaes GI, Ronneberg JA, Kristensen VN et al (2015) Heterogeneous DNA methylation patterns in the GSTP1 promoter lead to discordant results between assay technologies and impede its implementation as epigenetic biomarkers in breast cancer. Genes (Basel) 6:878–900

    Article  CAS  Google Scholar 

  18. consortium B (2016) Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol 34:726–737

    Article  Google Scholar 

  19. Dejeux E, Audard V, Cavard C et al (2007) Rapid identification of promoter hypermethylation in hepatocellular carcinoma by pyrosequencing of etiologically homogeneous sample pools. J Mol Diagn 9:510–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lehmann U (2015) Quantitative validation and quality control of pyrosequencing(R) assays. Methods Mol Biol 1315:39–46

    Article  PubMed  Google Scholar 

  21. Quillien V, Lavenu A, Ducray F et al (2016) Validation of the high-performance of pyrosequencing for clinical MGMT testing on a cohort of glioblastoma patients from a prospective dedicated multicentric trial. Oncotarget 7:61916–61929

    Article  PubMed  PubMed Central  Google Scholar 

  22. Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miceli-Richard C, Wang-Renault SF, Boudaoud S et al (2016) Overlap between differentially methylated DNA regions in blood B lymphocytes and genetic at-risk loci in primary Sjogren's syndrome. Ann Rheum Dis 75:933–940

    Article  CAS  PubMed  Google Scholar 

  24. Morales E, Vilahur N, Salas LA et al (2016) Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy. Int J Epidemiol 45:1644–1655

    Article  PubMed  Google Scholar 

  25. Yang AS, Estecio MR, Doshi K et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luttropp K, Sjoholm LK, Ekstrom TJ (2015) Global analysis of DNA 5-methylcytosine using the luminometric methylation assay, LUMA. Methods Mol Biol 1315:209–219

    Article  PubMed  Google Scholar 

  27. Tabish AM, Baccarelli AA, Godderis L et al (2015) Assessment of changes in global DNA methylation levels by pyrosequencing(R) of repetitive elements. Methods Mol Biol 1315:201–207

    Article  PubMed  Google Scholar 

  28. Wong HL, Byun HM, Kwan JM et al (2006) Rapid and quantitative method of allele-specific DNA methylation analysis. BioTechniques 41:734–739

    Article  CAS  PubMed  Google Scholar 

  29. Busato F, Tost J (2015) SNP-based quantification of allele-specific DNA methylation patterns by pyrosequencing(R). Methods Mol Biol 1315:291–313

    Article  PubMed  Google Scholar 

  30. Kristensen LS, Johansen JV, Gronbaek K (2015) Allele-specific DNA methylation detection by pyrosequencing(R). Methods Mol Biol 1315:271–289

    Article  PubMed  Google Scholar 

  31. Moison C, Assemat F, Daunay A et al (2015) DNA methylation analysis of ChIP products at single nucleotide resolution by pyrosequencing(R). Methods Mol Biol 1315:315–333

    Article  PubMed  Google Scholar 

  32. Hajj NE, Kuhtz J, Haaf T (2015) Limiting dilution bisulfite pyrosequencing(R): a method for methylation analysis of individual DNA molecules in a single or a few cells. Methods Mol Biol 1315:221–239

    Article  PubMed  Google Scholar 

  33. Huntriss J, Woodfine K, Huddleston JE et al (2015) Analysis of DNA methylation patterns in single blastocysts by pyrosequencing(R). Methods Mol Biol 1315:259–270

    Article  PubMed  Google Scholar 

  34. How-Kit A, Daunay A, Mazaleyrat N et al (2015) Accurate CpG and non-CpG cytosine methylation analysis by high-throughput locus-specific pyrosequencing in plants. Plant Mol Biol 88:471–485

    Article  CAS  PubMed  Google Scholar 

  35. Tost J, El abdalaoui H, Gut IG (2006) Serial pyrosequencing for quantitative DNA methylation analysis. BioTechniques 40:721–722, 724, 726

    Article  CAS  PubMed  Google Scholar 

  36. Masser DR, Berg AS, Freeman WM (2013) Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenetics Chromatin 6:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dejeux E, El abdalaoui H, Gut IG et al (2009) Identification and quantification of differentially methylated loci by the pyrosequencing technology. Methods Mol Biol 507:189–205

    Article  CAS  PubMed  Google Scholar 

  38. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  39. Dunker J, Larsson U, Petersson D et al (2003) Parallel DNA template preparation using a vacuum filtration sample transfer device. BioTechniques 34:862–868

    CAS  PubMed  Google Scholar 

  40. Aranyi T, Varadi A, Simon I et al (2006) The BiSearch web server. BMC Bioinformatics 7:431

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tost J, Jammes H, Dupont JM et al (2007) Non-random, individual-specific methylation profiles are present at the sixth CTCF binding site in the human H19/IGF2 imprinting control region. Nucleic Acids Res 35:701

    Article  CAS  PubMed  Google Scholar 

  42. Warnecke PM, Stirzaker C, Melki JR et al (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 25:4422–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kwabi-Addo B, Chung W, Shen L et al (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13:3796–3802

    Article  CAS  PubMed  Google Scholar 

  44. Ye H, Wu H, Liu Y et al (2015) Prenatal diagnosis of chromosomal aneuploidies by quantitative pyrosequencing(R). Methods Mol Biol 1315:123–132

    Article  PubMed  Google Scholar 

  45. Tetzner R, Dietrich D, Distler J (2007) Control of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA. Nucleic Acids Res 35:e4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of JT is supported by grants from the ANR (ANR-13-EPIG-0003-05 and ANR-13-CESA-0011-05), Aviesan/INSERM (EPIG2014-01 and EPlG2014-18) and INCa (PRT-K14-049), a Sirius research award (UCB Pharma S.A.), a Passerelle research award (Pfizer), iCARE (MSD Avenir), and the institutional budget of the CNRGH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Tost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Busato, F., Dejeux, E., El abdalaoui, H., Gut, I.G., Tost, J. (2018). Quantitative DNA Methylation Analysis at Single-Nucleotide Resolution by Pyrosequencing®. In: Tost, J. (eds) DNA Methylation Protocols. Methods in Molecular Biology, vol 1708. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7481-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7481-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7479-5

  • Online ISBN: 978-1-4939-7481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics