Skip to main content

Ex Vivo Dual Perfusion of the Human Placenta: Disease Simulation, Therapeutic Pharmacokinetics and Analysis of Off-Target Effects

  • Protocol
  • First Online:
Preeclampsia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1710))

Abstract

In recent years ex vivo dual perfusion of the human placental lobule is seeing an international renaissance in its application to understanding fetal health and development. Here, we discuss the methods and uses of this technique in the evaluation of (1) vascular function, (2) transplacental clearance, (3) hemodynamic and oxygenation changes associated with pregnancy complications on placental structure and function, and (4) placental toxicology and post-perfusion evaluation of tissue architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Berveiller P, Gil S, Vialard F (2017) Placental perfusion: interest and limits. J Matern Fetal Neonatal Med 30:1347–1348

    Article  Google Scholar 

  2. Brownbill P et al (2000) Denudations as paracellular routes for alphafetoprotein and creatinine across the human syncytiotrophoblast. Am J Physiol Regul Integr Comp Physiol 278(3):R677–R683

    Article  CAS  Google Scholar 

  3. Eisenmann CJ, Miller RK (1994) The placental transfer and toxicity of selenite relative to cadmium in the human term perfused placenta. Placenta 15(8):883–895

    Article  CAS  Google Scholar 

  4. Kummu M et al (2015) Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system. Placenta 36(10):1185–1191

    Article  CAS  Google Scholar 

  5. Abumaree MH et al (2014) IFPA Meeting 2013 Workshop Report III: maternal placental immunological interactions, novel determinants of trophoblast cell fate, dual ex vivo perfusion of the human placenta. Placenta 35:S15–S19

    Article  Google Scholar 

  6. May K et al (2011) Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by alpha1-microglobulin. Placenta 32(4):323–332

    Article  CAS  Google Scholar 

  7. Mathiesen L et al (2010) Quality assessment of a placental perfusion protocol. Reprod Toxicol 30(1):138–146

    Article  CAS  Google Scholar 

  8. Nanovskaya T et al (2012) Transplacental transfer of vancomycin and telavancin. Am J Obstet Gynecol 207(4):331.e1–331.e6

    Article  CAS  Google Scholar 

  9. Perazzolo S et al (2017) The influence of placental metabolism on fatty acid transfer to the fetus. J Lipid Res 58(2):443–454

    Article  CAS  Google Scholar 

  10. Lees CC et al (2015) 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 385(9983):2162–2172

    Article  Google Scholar 

  11. Brownbill P et al (2003) Neurokinin B is a paracrine vasodilator in the human fetal placental circulation. J Clin Endocrinol Metab 88(5):2164–2170

    Article  CAS  Google Scholar 

  12. Brownbill P, Sibley CP (2006) Regulation of transplacental water transfer: the role of fetoplacental venous tone. Placenta 27:560–567

    Article  CAS  Google Scholar 

  13. Jain A et al (2014) Hypoxic treatment of human dual placental perfusion induces a preeclampsia-like inflammatory response. Lab Invest 94(8):873–880

    Article  CAS  Google Scholar 

  14. Leach L, Firth JA (1992) Fine structure of the paracellular junctions of terminal villous capillaries in the perfused human placenta. Cell Tissue Res 268(3):447–452

    Article  CAS  Google Scholar 

  15. Malek A et al (1995) Continuous measurement of ATP by 31P-NMR in term human dually perfused placenta in vitro: response to ischemia. J Appl Physiol 78(5):1778–1786

    Article  CAS  Google Scholar 

  16. Schamberger S et al (2013) Establishment of a one-sided ex vivo human placenta perfusion model to assess adhesion and invasion behavior of T cell leukemia cell lines. Leuk Lymphoma 54(8):1811–1813

    Article  Google Scholar 

  17. Tannetta DS et al (2015) Syncytiotrophoblast extracellular vesicles from pre-eclampsia placentas differentially affect platelet function. PLoS One 10(11):e0142538

    Article  Google Scholar 

  18. Gordon Z et al (2016) Ex vivo human placental perfusion model for analysis of fetal circulation in the chorionic plate. J Ultrasound Med 35(3):553–560

    Article  Google Scholar 

  19. Illsley NP et al (1985) Human placental ultrastructure after in vitro dual perfusion. Placenta 6(1):23–32

    Article  CAS  Google Scholar 

  20. Schneider H (2000) Placental oxygen consumption. Part II: in vitro studies - a review. Placenta 21(Suppl A):S38–S44

    Article  Google Scholar 

  21. Brownbill P et al (2016) An international network (PlaNet) to evaluate a human placental testing platform for chemicals safety testing in pregnancy. Reprod Toxicol 64:191–202

    Article  CAS  Google Scholar 

  22. Leach L, Firth JA (1997) Structure and permeability of human placental microvasculature. Microsc Res Tech 38(1-2):137–144

    Article  CAS  Google Scholar 

  23. Chernyavsky IL et al (2011) Transport in the placenta: homogenizing haemodynamics in a disordered medium. Philos Trans A Math Phys Eng Sci 369(1954):4162–4182

    Article  CAS  Google Scholar 

  24. Walker N et al (2017) Placental transporter localization and expression in the human: the importance of species, sex and gestational age differences1. Biol Reprod 96:733

    Article  Google Scholar 

  25. Miller RK et al (2003) Marginal transfer of ReoPro (Abciximab) compared with immunoglobulin G (F105), inulin and water in the perfused human placenta in vitro. Placenta 24(7):727–738

    Article  CAS  Google Scholar 

  26. Cleal JK et al (2007) Modification of fetal plasma amino acid composition by placental amino acid exchangers in vitro. J Physiol Lond 582(2):871–882

    Article  CAS  Google Scholar 

  27. Myllynen P, Vahakangas K (2013) Placental transfer and metabolism: an overview of the experimental models utilizing human placental tissue. Toxicol In Vitro 27(1):507–512

    Article  CAS  Google Scholar 

  28. Pehrson C et al (2016) Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue: a novel model of placental malaria. Malar J 15(1):292

    Article  Google Scholar 

  29. Porter C et al (2016) Certolizumab pegol does not bind the neonatal Fc receptor (FcRn): consequences for FcRn-mediated in vitro transcytosis and ex vivo human placental transfer. J Reprod Immunol 116:7–12

    Article  CAS  Google Scholar 

  30. Glance DG et al (1984) The effects of the components of the renin-angiotensin system on the isolated perfused human placental cotyledon. Am J Obstet Gynecol 149(4):450–454

    Article  CAS  Google Scholar 

  31. Jones S et al (2015) Dysregulated flow-mediated vasodilatation in the human placenta in fetal growth restriction. J Physiol 593(14):3077–3092

    Article  CAS  Google Scholar 

  32. Gude NM (1988) An investigation into the mechanisms controlling vascular tone of the fetal vessels of the human isolated perfused placenta. PhD thesis. Monash University, Clayton VIC

    Google Scholar 

  33. Cindrova-Davies T et al (2013) Reduced cystathionine γ-lyase and increased miR-21 expression are associated with increased vascular resistance in growth-restricted pregnancies: hydrogen sulfide as a placental vasodilator. Am J Pathol 182(4):1448–1458

    Article  CAS  Google Scholar 

  34. Mortimer RH et al (2012) Secretion and transfer of the thyroid hormone binding protein transthyretin by human placenta. Placenta 33(4):252–256

    Article  CAS  Google Scholar 

  35. Hutchinson ES et al (2009) Assessment of the link between spiral artery diameters, intervillous flow and pre-eclampsia pathogenesis using the in vitro dually perfused human placenta. Reprod Sci 16(3):173A

    Google Scholar 

  36. Balan A et al (2017) The effects of pravastatin on the normal human placenta: lessons from ex-vivo models. PLoS One 12(2):e0172174

    Article  Google Scholar 

  37. Osmond D et al (2000) Effects of gestational diabetes on human placental glucose uptake, transfer, and utilisation. Diabetologia 43(5):576–582

    Article  CAS  Google Scholar 

  38. Brook A et al (2013) Free fetal haemoglobin elevates vascular tone in the fetoplacental circulation. Placenta 34:A40

    Article  Google Scholar 

  39. Kertschanska S, Kosanke G, Kaufmann P (1997) Pressure dependence of so-called transtrophoblastic channels during fetal perfusion of human placental villi. Microsc Res Tech 38:52–62

    Article  CAS  Google Scholar 

  40. Sebire NJ, Talbert D (2004) The dynamic placenta: II. Hypothetical model of a fetus driven transplacental water balance mechanism producing low apparent permeability in a highly permeable placenta. Med Hypotheses 62(4):520–528

    Article  CAS  Google Scholar 

  41. Schneider H, Huch A (1985) Dual in vitro perfusion of an isolated lobe of human placenta: method and instrumentation. Contrib Gynecol Obstet 13:40–47

    CAS  PubMed  Google Scholar 

  42. Dilworth MR, Sibley CP (2013) Review: transport across the placenta of mice and women. Placenta 34(Suppl):S34–S39

    Article  CAS  Google Scholar 

  43. Ceckova-Novotna M, Pavek P, Staud F (2006) P-glycoprotein in the placenta: expression, localization, regulation and function. Reprod Toxicol 22(3):400–410

    Article  CAS  Google Scholar 

  44. Carter A (1993) In: Hanson M, Spencer J, Rodeck C (eds) Fetal placental circulation, in fetus and neonate physiology and clinical applications. Cambridge University Press, Cambridge, pp 116–136

    Google Scholar 

  45. Guittina P, Elefant E, Saint-Salvi B (2000) Hierarchization of animal teratology findings for improving the human risk evaluation of drugs. Reprod Toxicol 14(4):369–375

    Article  CAS  Google Scholar 

  46. Sibley CP, Boyd RD (1988) Control of transfer across the mature placenta. Oxf Rev Reprod Biol 10:382–435

    CAS  PubMed  Google Scholar 

  47. Soydemir F et al (2011) Adapting in vitro dual perfusion of the human placenta to soluble oxygen tensions associated with normal and pre-eclamptic pregnancy. Lab Invest 91(2):181–189

    Article  CAS  Google Scholar 

  48. OECD (2015) Test No. 421: reproduction/developmental toxicity screening test. OECD Publishing, Paris

    Book  Google Scholar 

  49. Nakanishi T et al (2005) Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions. Mol Endocrinol 19(10):2502–2516

    Article  CAS  Google Scholar 

  50. Sato BL et al (2015) Validation of murine and human placental explant cultures for use in sex steroid and phase II conjugation toxicology studies. Toxicol In Vitro 29(1):103–112

    Article  CAS  Google Scholar 

  51. Nanovskaya TN et al (2008) Effect of albumin on transplacental transfer and distribution of rosiglitazone and glyburide. J Matern Fetal Neonatal Med 21(3):197–207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Brownbill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Brownbill, P., Sebire, N., McGillick, E.V., Ellery, S., Murthi, P. (2018). Ex Vivo Dual Perfusion of the Human Placenta: Disease Simulation, Therapeutic Pharmacokinetics and Analysis of Off-Target Effects. In: Murthi, P., Vaillancourt, C. (eds) Preeclampsia . Methods in Molecular Biology, vol 1710. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7498-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7498-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7497-9

  • Online ISBN: 978-1-4939-7498-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics