Skip to main content

Isolation and Characterization of Mesenchymal Stem/Stromal Cells Derived from Human Third Trimester Placental Chorionic Villi and Decidua Basalis

  • Protocol
  • First Online:
Book cover Preeclampsia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1710))

Abstract

The decidua basalis and placental chorionic villi are critical components of maternal-fetal interface, which plays a critical role in normal placental development. Failure to form a proper maternal-fetal interface is associated with clinically important placental pathologies including preeclampsia and fetal growth restriction. Placental trophoblast cells are well known for their critical roles in establishing the maternal-fetal interface; however accumulating evidence also implicates mesenchymal stem/stromal cells that envelop the maternal and fetal blood vessels as playing an important role in the formation and efficient functioning of the interface. Moreover, recent studies associate abnormal mesenchymal stem/stromal cell function in the development of preeclampsia. Further research is needed to fully understand the role that these cells play in this clinically important placental pathology.

The intimate relationship between maternal and fetal tissues at the interface poses significant problems in the enrichment of decidua basalis and chorionic villous mesenchymal stem/stromal cells without significant cross-contamination. The protocols described below for the enrichment and characterization of mesenchymal stem/stromal cells from the maternal-fetal interface produce highly enriched cells that conform to international standards and show minimal cross-contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. Thromb Res 114:397–407. https://doi.org/10.1016/j.thromres.2004.06.038

    Article  CAS  PubMed  Google Scholar 

  2. in’t Anker PS, Scherjon SA, Kleijburg-van der Keur C et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345. https://doi.org/10.1634/stemcells.2004-0058

    Article  Google Scholar 

  3. Wulf GG, Viereck V, Hemmerlein B et al (2004) Mesengenic progenitor cells derived from human placenta. Tissue Eng 10:1136–1147. https://doi.org/10.1089/ten.2004.10.1136

    Article  CAS  PubMed  Google Scholar 

  4. Macias MI, Grande J, Moreno A et al (2010) Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol 203:495.e9–495.e23

    Article  Google Scholar 

  5. Kanematsu D, Shofuda T, Yamamoto A et al (2011) Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta. Differentiation 82:77–88. https://doi.org/10.1016/j.diff.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  6. Kusuma GD, Manuelpillai U, Abumaree MH et al (2015) Mesenchymal stem cells reside in a vascular niche in the decidua basalis and are absent in remodelled spiral arterioles. Placenta 36:312–321. https://doi.org/10.1016/j.placenta.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  7. Oliver C (1999) Human decidual stromal cells express alpha-smooth muscle actin and show ultrastructural similarities with myofibroblasts. Hum Reprod 14:1599–1605. https://doi.org/10.1093/humrep/14.6.1599

    Article  CAS  PubMed  Google Scholar 

  8. Indumathi S, Harikrishnan R, Mishra R et al (2013) Comparison of feto-maternal organ derived stem cells in facets of immunophenotype, proliferation and differentiation. Tissue Cell 45:434–442. https://doi.org/10.1016/j.tice.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  9. Castrechini NM, Murthi P, Qin S et al (2012) Decidua parietalis-derived mesenchymal stromal cells reside in a vascular niche within the choriodecidua. Reprod Sci 19:1302. https://doi.org/10.1177/1933719112450334

    Article  CAS  PubMed  Google Scholar 

  10. Parolini O, Alviano F, Bagnara GP et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26:300–311. https://doi.org/10.1634/stemcells.2007-0594

    Article  PubMed  Google Scholar 

  11. Fukuchi Y, Nakajima H, Sugiyama D et al (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22:649–658. https://doi.org/10.1634/stemcells.22-5-649

    Article  CAS  PubMed  Google Scholar 

  12. Igura K, Zhang X, Takahashi K et al (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553. https://doi.org/10.1080/14653240410005366

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Mitsuru A, Igura K et al (2006) Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun 340:944–952. https://doi.org/10.1016/j.bbrc.2005.12.091

    Article  CAS  PubMed  Google Scholar 

  14. Castrechini NM, Murthi P, Gude NM et al (2010) Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta 31:203–212. https://doi.org/10.1016/j.placenta.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  15. Nazarov I, Lee JW, Soupene E et al (2012) Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential. Stem Cells Transl Med 1:359–372. https://doi.org/10.5966/sctm.2011-0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abumaree MH, Al Jumah MA, Kalionis B et al (2013) Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev Rep 9:16–31. https://doi.org/10.1007/s12015-012-9385-4

    Article  CAS  Google Scholar 

  17. Heazlewood CF, Sherrell H, Ryan J et al (2014) High incidence of contaminating maternal cell overgrowth in human placental mesenchymal stem/stromal cell cultures: a systematic review. Stem Cells Transl Med 3:1305–1311

    Article  Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  19. Parolini O, Alviano F, Bergwerf I et al (2010) Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells Dev 19:143–154. https://doi.org/10.1089/scd.2009.0404

    Article  PubMed  Google Scholar 

  20. Kusuma GD, Abumaree MH, Pertile MD et al (2016) Mesenchymal stem/stromal cells derived from a reproductive tissue niche under oxidative stress have high aldehyde dehydrogenase activity. Stem Cell Rev Rep 12:285–297. https://doi.org/10.1007/s12015-016-9649-5

    Article  CAS  Google Scholar 

  21. Abumaree MH, Abomaray FM, Alshehri NA et al (2016) Phenotypic and functional characterization of mesenchymal stem/multipotent stromal cells from decidua parietalis of human term placenta. Reprod Sci 23:1193. https://doi.org/10.1177/1933719116632924

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez PL, Carvajal C, Cuenca J et al (2015) Chorion mesenchymal stem cells show superior differentiation, immunosuppressive, and angiogenic potentials in comparison with haploidentical maternal placental cells. Stem Cells Transl Med 4:1109–1121

    Article  CAS  Google Scholar 

  23. Abumaree MH, Al JM a, Kalionis B et al (2013) Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev Rep 9:620–641. https://doi.org/10.1007/s12015-013-9455-2

    Article  CAS  Google Scholar 

  24. Abomaray FM, Al Jumah MA, Kalionis B et al (2015) Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells, and induce an anti-inflammatory phenotype in CD1+ dendritic cells. Stem Cell Rev 11:423. https://doi.org/10.1007/s12015-014-9562-8

    Article  CAS  PubMed  Google Scholar 

  25. Kusuma GD, Menicanin D, Gronthos S et al (2015) Ectopic bone formation by mesenchymal stem cells derived from human term placenta and the decidua. PLoS One 10:e0141246. https://doi.org/10.1371/journal.pone.0141246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qin SQ, Kusuma GD, Al-Sowayan B et al (2016) Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta. Placenta 39:134–146. https://doi.org/10.1016/j.placenta.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Murthi P, Qin S et al (2014) A novel combination of homeobox genes is expressed in mesenchymal chorionic stem/stromal cells in first trimester and term pregnancies. Reprod Sci 21:1382–1394

    Article  Google Scholar 

  28. Tran TC, Kimura K, Nagano M et al (2011) Identification of human placenta-derived mesenchymal stem cells involved in re-endothelialization. J Cell Physiol 226:224–235. https://doi.org/10.1002/jcp.22329

    Article  CAS  PubMed  Google Scholar 

  29. Ohlsson R, Falck P, Hellstrom M et al (1999) PDGFB regulates the development of the labyrinthine layer of the mouse fetal placenta. Dev Biol 212:124–136. https://doi.org/10.1006/dbio.1999.9306

    Article  CAS  PubMed  Google Scholar 

  30. Hwang JH, Lee MJ, Seok OS et al (2010) Cytokine expression in placenta-derived mesenchymal stem cells in patients with pre-eclampsia and normal pregnancies. Cytokine 49:95–101. https://doi.org/10.1016/j.cyto.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Fan H, Zhao G et al (2012) miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J 279:4510–4524. https://doi.org/10.1111/febs.12037

    Article  CAS  PubMed  Google Scholar 

  32. Zhao G, Zhou X, Chen S et al (2014) Differential expression of microRNAs in decidua-derived mesenchymal stem cells from patients with pre-eclampsia. J Biomed Sci 21:81. https://doi.org/10.1186/s12929-014-0081-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen S, Zhao G, Miao H et al (2015) MicroRNA-494 inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett 589:710–717. https://doi.org/10.1016/j.febslet.2015.01.038

    Article  CAS  PubMed  Google Scholar 

  34. Kusuma GD, Abumaree MH, Perkins AV et al (2017) Reduced aldehyde dehydrogenase expression in preeclamptic decidual mesenchymal stem/stromal cells is restored by aldehyde dehydrogenase agonists. Sci Rep 7:42397. https://doi.org/10.1038/srep42397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rolfo A, Giuffrida D, Nuzzo AM et al (2013) Pro-inflammatory profile of preeclamptic placental mesenchymal stromal cells: new insights into the etiopathogenesis of preeclampsia. PLoS One 8:e59403

    Article  CAS  Google Scholar 

  36. Portmann-Lanz CB, Baumann MU, Mueller M et al (2010) Neurogenic characteristics of placental stem cells in preeclampsia. Am J Obstet Gynecol 203(399):e1–e7. https://doi.org/10.1016/j.ajog.2010.06.054

    Article  Google Scholar 

  37. Liu L, Zhao G, Fan H et al (2014) Mesenchymal stem cells ameliorate Th1-induced pre-eclampsia-like symptoms in mice via the suppression of TNF-alpha expression. PLoS One 9:e88036. https://doi.org/10.1371/journal.pone.0088036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chatterjee P, Chiasson VL, Pinzur L, Raveh S, Abraham EEA (2016) Human placenta-derived stromal cells decrease inflammation, placental injury, and blood pressure in hypertensive pregnant mice. Clin Sci (Lond) 130:513–523. https://doi.org/10.1042/CS20150555

    Article  CAS  Google Scholar 

  39. National High Blood Pressure Education Program Working Group on High Blood Pressure in P (2000) Report of the National High Blood Pressure Education Program Working Group on high blood pressure in pregnancy. Am J Obstet Gynecol 183:s1–s22. https://doi.org/10.1067/mob.2000.107928

    Article  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the work of Dr Rishika Anne Pace, Dr Sharon Qin, Melissa Duggan, and Anthony Borg who contributed to the optimization of these protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill Kalionis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kusuma, G.D., Abumaree, M.H., Pertile, M.D., Kalionis, B. (2018). Isolation and Characterization of Mesenchymal Stem/Stromal Cells Derived from Human Third Trimester Placental Chorionic Villi and Decidua Basalis. In: Murthi, P., Vaillancourt, C. (eds) Preeclampsia . Methods in Molecular Biology, vol 1710. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7498-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7498-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7497-9

  • Online ISBN: 978-1-4939-7498-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics