Skip to main content

Genetic Approaches in Preeclampsia

  • Protocol
  • First Online:
Preeclampsia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1710))

Abstract

Preeclampsia (PE) is a serious hypertensive disorder that affects up to 8% of all pregnancies annually. An established risk factor for PE is family history, clearly demonstrating an underlying genetic component to the disorder. To date, numerous genetic studies, using both the candidate gene and genome-wide approach, have been undertaken to tease out the genetic basis of PE and understand its origins. Such studies have identified some promising candidate genes such as STOX1 and ACVR2A. Nevertheless, researchers face ongoing challenges of replicating these genetic associations in different populations and performing the functional validation of identified genetic variants to determine their causality in the disorder. This chapter will review the genetic approaches used in the study of PE, discuss their limitations and possible confounders, and describe current strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Duley L (2009) The global impact of preeclampsia and eclampsia. Semin Perinatol 33(3):130–137. https://doi.org/10.1053/j.semperi.2009.02.010

    Article  PubMed  Google Scholar 

  2. Tranquilli AL, Dekker G, Magee L, Roberts J, Sibai BM, Steyn W, Zeeman GG, Brown MA (2014) The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens 4(2):97–104. https://doi.org/10.1016/j.preghy.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  3. Murphy DJ, Stirrat GM (2000) Mortality and morbidity associated with early-onset preeclampsia. Hypertens Pregnancy 19(2):221–231

    Article  CAS  PubMed  Google Scholar 

  4. Sibai B, Dekker G, Kupferminc M (2005) Preeclampsia. Lancet 365(9461):785–799. https://doi.org/10.1016/S0140-6736(05)17987-2

    Article  PubMed  Google Scholar 

  5. Tranquilli AL, Brown MA, Zeeman GG, Dekker G, Sibai BM (2013) The definition of severe and early-onset preeclampsia. Statements from the International Society for the Study of hypertension in pregnancy (ISSHP). Pregnancy Hypertens 3(1):44–47. https://doi.org/10.1016/j.preghy.2012.11.001

    Article  PubMed  Google Scholar 

  6. Lowe SA, Brown MA, Dekker GA, Gatt S, McLintock CK, McMahon LP, Mangos G, Moore MP, Muller P, Paech M, Walters B (2009) Guidelines for the management of hypertensive disorders of pregnancy 2008. Aust N Z J Obstet Gynaecol 49(3):242–246. https://doi.org/10.1111/j.1479-828X.2009.01003.x

    Article  PubMed  Google Scholar 

  7. Boyd HA, Tahir H, Wohlfahrt J, Melbye M (2013) Associations of personal and family preeclampsia history with the risk of early-, intermediate- and late-onset preeclampsia. Am J Epidemiol 178(11):1611–1619. https://doi.org/10.1093/aje/kwt189

    Article  PubMed  Google Scholar 

  8. Chesley LC, Annitto JE, Cosgrove RA (1968) The familial factor in toxemia of pregnancy. Obstet Gynecol 32(3):303–311

    CAS  PubMed  Google Scholar 

  9. Skjaerven R, Vatten LJ, Wilcox AJ, Ronning T, Irgens LM, Lie RT (2005) Recurrence of preeclampsia across generations: exploring fetal and maternal genetic components in a population based cohort. BMJ 331(7521):877. https://doi.org/10.1136/bmj.38555.462685.8F

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dawson LM, Parfrey PS, Hefferton D, Dicks EL, Cooper MJ, Young D, Marsden PA (2002) Familial risk of preeclampsia in Newfoundland: a population-based study. J Am Soc Nephrol 13(7):1901–1906

    Article  PubMed  Google Scholar 

  11. Sutherland A, Cooper DW, Howie PW, Liston WA, MacGillivray I (1981) The incidence of severe preeclampsia amongst mothers and mothers-in-law of preeclamptics and controls. Br J Obstet Gynaecol 88(8):785–791

    Article  CAS  PubMed  Google Scholar 

  12. O’Shaughnessy KM, Ferraro F, Fu B, Downing S, Morris NH (2000) Identification of monozygotic twins that are concordant for preeclampsia. Am J Obstet Gynecol 182(5):1156–1157

    Article  PubMed  Google Scholar 

  13. Treloar SA, Cooper DW, Brennecke SP, Grehan MM, Martin NG (2001) An Australian twin study of the genetic basis of preeclampsia and eclampsia. Am J Obstet Gynecol 184(3):374–381. https://doi.org/10.1067/mob.2001.109400

    Article  CAS  PubMed  Google Scholar 

  14. Johnson MP, Fitzpatrick E, Dyer TD, Jowett JB, Brennecke SP, Blangero J, Moses EK (2007) Identification of two novel quantitative trait loci for preeclampsia susceptibility on chromosomes 5q and 13q using a variance components-based linkage approach. Mol Hum Reprod 13(1):61–67. https://doi.org/10.1093/molehr/gal095

    Article  CAS  PubMed  Google Scholar 

  15. Nilsson E, Salonen Ros H, Cnattingius S, Lichtenstein P (2004) The importance of genetic and environmental effects for preeclampsia and gestational hypertension: a family study. BJOG 111(3):200–206

    Article  PubMed  Google Scholar 

  16. Salonen Ros H, Lichtenstein P, Lipworth L, Cnattingius S (2000) Genetic effects on the liability of developing preeclampsia and gestational hypertension. Am J Med Genet 91(4):256–260. https://doi.org/10.1002/(SICI)1096-8628(20000410)91:4<256::AID-AJMG3=3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  17. Cnattingius S, Reilly M, Pawitan Y, Lichtenstein P (2004) Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet A 130A(4):365–371. https://doi.org/10.1002/ajmg.a.30257

    Article  PubMed  Google Scholar 

  18. Arngrimsson R, Bjornsson S, Geirsson RT, Bjornsson H, Walker JJ, Snaedal G (1990) Genetic and familial predisposition to eclampsia and preeclampsia in a defined population. Br J Obstet Gynaecol 97(9):762–769

    Article  CAS  PubMed  Google Scholar 

  19. Torbergsen T, Oian P, Mathiesen E, Borud O (1989) Preeclampsia – a mitochondrial disease? Acta Obstet Gynecol Scand 68(2):145–148

    Article  CAS  PubMed  Google Scholar 

  20. Graves JA (1998) Genomic imprinting, development and disease – is preeclampsia caused by a maternally imprinted gene? Reprod Fertil Dev 10(1):23–29

    Article  CAS  PubMed  Google Scholar 

  21. Chappell S, Morgan L (2006) Searching for genetic clues to the causes of preeclampsia. Clin Sci (Lond) 110(4):443–458. https://doi.org/10.1042/CS20050323

    Article  CAS  Google Scholar 

  22. Mutze S, Rudnik-Schoneborn S, Zerres K, Rath W (2008) Genes and the preeclampsia syndrome. J Perinat Med 36(1):38–58. https://doi.org/10.1515/JPM.2008.004

    Article  CAS  PubMed  Google Scholar 

  23. Luo ZC, An N, Xu HR, Larante A, Audibert F, Fraser WD (2007) The effects and mechanisms of primiparity on the risk of preeclampsia: a systematic review. Paediatr Perinat Epidemiol 21(Suppl 1):36–45. https://doi.org/10.1111/j.1365-3016.2007.00836.x

    Article  PubMed  Google Scholar 

  24. Kwon JM, Goate AM (2000) The candidate gene approach. Alcohol Res Health 24(3):164

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Williams PJ, Broughton Pipkin F (2011) The genetics of preeclampsia and other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 25(4):405–417. https://doi.org/10.1016/j.bpobgyn.2011.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Buurma AJ, Turner RJ, Driessen JH, Mooyaart AL, Schoones JW, Bruijn JA, Bloemenkamp KW, Dekkers OM, Baelde HJ (2013) Genetic variants in preeclampsia: a meta-analysis. Hum Reprod Update 19(3):289–303. https://doi.org/10.1093/humupd/dms060

    Article  CAS  PubMed  Google Scholar 

  27. Staines-Urias E, Paez MC, Doyle P, Dudbridge F, Serrano NC, Ioannidis JP, Keating BJ, Hingorani AD, Casas JP (2012) Genetic association studies in preeclampsia: systematic meta-analyses and field synopsis. Int J Epidemiol 41(6):1764–1775. https://doi.org/10.1093/ije/dys162

    Article  PubMed  Google Scholar 

  28. Dai B, Liu T, Zhang B, Zhang X, Wang Z (2013) The polymorphism for endothelial nitric oxide synthase gene, the level of nitric oxide and the risk for preeclampsia: a meta-analysis. Gene 519(1):187–193. https://doi.org/10.1016/j.gene.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  29. Yu CK, Casas JP, Savvidou MD, Sahemey MK, Nicolaides KH, Hingorani AD (2006) Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) and development of preeclampsia: a case-control study and a meta-analysis. BMC Pregnancy Childbirth 6:7. https://doi.org/10.1186/1471-2393-6-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiby SE, Walker JJ, O’Shaughnessy KM, Redman CW, Carrington M, Trowsdale J, Moffett A (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200(8):957–965. https://doi.org/10.1084/jem.20041214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu H, Pan N, Shen Y, Jin S, Zhai J, Qiao D, Shen Y, Miao F, Wang L, He Y, Ren M, Zhang J (2014) Interaction of parental KIR and fetal HLA-C genotypes with the risk of preeclampsia. Hypertens Pregnancy 33(4):402–411. https://doi.org/10.3109/10641955.2014.920026

    Article  CAS  PubMed  Google Scholar 

  32. Nakimuli A, Chazara O, Hiby SE, Farrell L, Tukwasibwe S, Jayaraman J, Traherne JA, Trowsdale J, Colucci F, Lougee E, Vaughan RW, Elliott AM, Byamugisha J, Kaleebu P, Mirembe F, Nemat-Gorgani N, Parham P, Norman PJ, Moffett A (2015) A KIR B centromeric region present in Africans but not Europeans protects pregnant women from preeclampsia. Proc Natl Acad Sci U S A 112(3):845–850. https://doi.org/10.1073/pnas.1413453112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lau SY, Guild SJ, Barrett CJ, Chen Q, McCowan L, Jordan V, Chamley LW (2013) Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in preeclampsia: a systematic review and meta-analysis. Am J Reprod Immunol 70(5):412–427. https://doi.org/10.1111/aji.12138

    Article  CAS  PubMed  Google Scholar 

  34. Xie C, Yao MZ, Liu JB, Xiong LK (2011) A meta-analysis of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 in preeclampsia. Cytokine 56(3):550–559. https://doi.org/10.1016/j.cyto.2011.09.021

    Article  CAS  PubMed  Google Scholar 

  35. Fong FM, Sahemey MK, Hamedi G, Eyitayo R, Yates D, Kuan V, Thangaratinam S, Walton RT (2014) Maternal genotype and severe preeclampsia: a HuGE review. Am J Epidemiol 180(4):335–345. https://doi.org/10.1093/aje/kwu151

    Article  PubMed  Google Scholar 

  36. Harmon QE, Engel SM, Wu MC, Moran TM, Luo J, Stuebe AM, Avery CL, Olshan AF (2014) Polymorphisms in inflammatory genes are associated with term small for gestational age and preeclampsia. Am J Reprod Immunol 71(5):472–484. https://doi.org/10.1111/aji.12241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zubor P, Dokus K, Zigo I, Skerenova M, Pullmann R, Danko J (2014) TNF alpha G308A gene polymorphism has an impact on renal function, microvascular permeability, organ involvement and severity of preeclampsia. Gynecol Obstet Investig 78(3):150–161. https://doi.org/10.1159/000364865

    Article  CAS  Google Scholar 

  38. Mao L, Zhou Q, Zhou S, Wilbur RR, Li X (2013) Roles of apolipoprotein E (ApoE) and inducible nitric oxide synthase (iNOS) in inflammation and apoptosis in preeclampsia pathogenesis and progression. PLoS One 8(3):e58168. https://doi.org/10.1371/journal.pone.0058168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Procopciuc LM, Caracostea G, Zaharie G, Stamatian F (2015) Newborn APOE genotype influences maternal lipid profile and the severity of high-risk pregnancy – preeclampsia. Interaction with maternal genotypes as a modulating risk factor in preeclampsia. Hypertens Pregnancy:1–13. https://doi.org/10.3109/10641955.2015.1009541

  40. Procopciuc LM, Zaharie G, Caracostea G, Stamatian F (2014) Newborn LpL (Ser447Stop, Asn291Ser) genotypes and the interaction with maternal genotypes influence the risk for different types of preeclampsia: modulating effect on lipid profile and pregnancy outcome. Gynecol Endocrinol 30(3):221–225. https://doi.org/10.3109/09513590.2013.871512

    Article  CAS  PubMed  Google Scholar 

  41. Matsubara K, Higaki T, Matsubara Y, Nawa A (2015) Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int J Mol Sci 16(3):4600–4614. https://doi.org/10.3390/ijms16034600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gupta S, Aziz N, Sekhon L, Agarwal R, Mansour G, Li J, Agarwal A (2009) Lipid peroxidation and antioxidant status in preeclampsia: a systematic review. Obstet Gynecol Surv 64(11):750–759. https://doi.org/10.1097/OGX.0b013e3181bea0ac

    Article  PubMed  Google Scholar 

  43. Mistry HD, Gill CA, Kurlak LO, Seed PT, Hesketh JE, Meplan C, Schomburg L, Chappell LC, Morgan L, Poston L, SCOPE Consortium (2015) Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks gestation in nulliparous women who subsequently develop preeclampsia. Free Radic Biol Med 78:147–155. https://doi.org/10.1016/j.freeradbiomed.2014.10.580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang X, Bai T, Liu S, Pan H, Wang B (2014) Association between thrombophilia gene polymorphisms and preeclampsia: a meta-analysis. PLoS One 9(6):e100789. https://doi.org/10.1371/journal.pone.0100789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang XM, Wu HY, Qiu XJ (2013) Methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and risk of preeclampsia: an updated meta-analysis based on 51 studies. Arch Med Res 44(3):159–168. https://doi.org/10.1016/j.arcmed.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  46. Harrison GA, Humphrey KE, Jones N, Badenhop R, Guo G, Elakis G, Kaye JA, Turner RJ, Grehan M, Wilton AN, Brennecke SP, Cooper DW (1997) A genomewide linkage study of preeclampsia/eclampsia reveals evidence for a candidate region on 4q. Am J Hum Genet 60(5):1158–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson MP, Brennecke SP, East CE, Goring HH, Kent JW Jr, Dyer TD, Said JM, Roten LT, Iversen AC, Abraham LJ, Heinonen S, Kajantie E, Kere J, Kivinen K, Pouta A, Laivuori H, Austgulen R, Blangero J, Moses EK (2012) Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene. PLoS One 7(3):e33666. https://doi.org/10.1371/journal.pone.0033666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moses EK, Lade JA, Guo G, Wilton AN, Grehan M, Freed K, Borg A, Terwilliger JD, North R, Cooper DW, Brennecke SP (2000) A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for preeclampsia, on chromosome 2. Am J Hum Genet 67(6):1581–1585. https://doi.org/10.1086/316888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laivuori H, Lahermo P, Ollikainen V, Widen E, Haiva-Mallinen L, Sundstrom H, Laitinen T, Kaaja R, Ylikorkala O, Kere J (2003) Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families. Am J Hum Genet 72(1):168–177. https://doi.org/10.1086/345311

    Article  CAS  PubMed  Google Scholar 

  50. Arngrimsson R, Siguroardottir S, Frigge ML, Bjarnadottir RI, Jonsson T, Stefansson H, Baldursdottir A, Einarsdottir AS, Palsson B, Snorradottir S, Lachmeijer AM, Nicolae D, Kong A, Bragason BT, Gulcher JR, Geirsson RT, Stefansson K (1999) A genome-wide scan reveals a maternal susceptibility locus for preeclampsia on chromosome 2p13. Hum Mol Genet 8(9):1799–1805

    Article  CAS  PubMed  Google Scholar 

  51. Lachmeijer AM, Arngrimsson R, Bastiaans EJ, Frigge ML, Pals G, Sigurdardottir S, Stefansson H, Palsson B, Nicolae D, Kong A, Aarnoudse JG, Gulcher JR, Dekker GA, ten Kate LP, Stefansson K (2001) A genome-wide scan for preeclampsia in the Netherlands. Eur J Hum Genet 9(10):758–764. https://doi.org/10.1038/sj.ejhg.5200706

    Article  CAS  PubMed  Google Scholar 

  52. Roten LT, Johnson MP, Thompsen LC, Gundersen AS, Solberg P, Tollaksen K, Lyslo I, Tappert C, Odland ML, Strand KM, Fenstad MH, Drablos F, Skorpen F, Moses EK, Austgulen R, Bjorge L (2013) OP006. A preeclampsia genome-wide linkage scan in Norwegian families. Pregnancy Hypertens 3(2):64. https://doi.org/10.1016/j.preghy.2013.04.022

    Article  PubMed  Google Scholar 

  53. Hayward C, Livingstone J, Holloway S, Liston WA, Brock DJ (1992) An exclusion map for preeclampsia: assuming autosomal recessive inheritance. Am J Hum Genet 50(4):749–757

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao L, Triche EW, Walsh KM, Bracken MB, Saftlas AF, Hoh J, Dewan AT (2012) Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients. BMC Pregnancy Childbirth 12:61. https://doi.org/10.1186/1471-2393-12-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo G, Lade JA, Wilton AN, Moses EK, Grehan M, Fu Y, Qiu H, Cooper DW, Brennecke SP (1999) Genetic susceptibility to preeclampsia and chromosome 7q36. Hum Genet 105(6):641–647

    Article  CAS  PubMed  Google Scholar 

  56. Fitzpatrick E, Goring HH, Liu H, Borg A, Forrest S, Cooper DW, Brennecke SP, Moses EK (2004) Fine mapping and SNP analysis of positional candidates at the preeclampsia susceptibility locus (PREG1) on chromosome 2. Hum Biol 76(6):849–862

    Article  CAS  PubMed  Google Scholar 

  57. Moses EK, Fitzpatrick E, Freed KA, Dyer TD, Forrest S, Elliott K, Johnson MP, Blangero J, Brennecke SP (2006) Objective prioritization of positional candidate genes at a quantitative trait locus for preeclampsia on 2q22. Mol Hum Reprod 12(8):505–512. https://doi.org/10.1093/molehr/gal056

    Article  CAS  PubMed  Google Scholar 

  58. Johnson MP, Roten LT, Dyer TD, East CE, Forsmo S, Blangero J, Brennecke SP, Austgulen R, Moses EK (2009) The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations. Hum Genet 126(5):655–666. https://doi.org/10.1007/s00439-009-0714-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fitzpatrick E, Johnson MP, Dyer TD, Forrest S, Elliott K, Blangero J, Brennecke SP, Moses EK (2009) Genetic association of the activin A receptor gene (ACVR2A) and preeclampsia. Mol Hum Reprod 15(3):195–204. https://doi.org/10.1093/molehr/gap001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fenstad MH, Johnson MP, Roten LT, Aas PA, Forsmo S, Klepper K, East CE, Abraham LJ, Blangero J, Brennecke SP, Austgulen R, Moses EK (2010) Genetic and molecular functional characterization of variants within TNFSF13B, a positional candidate preeclampsia susceptibility gene on 13q. PLoS One 5(9). https://doi.org/10.1371/journal.pone.0012993

    Article  PubMed  PubMed Central  Google Scholar 

  61. Johnson MP, Brennecke SP, East CE, Dyer TD, Roten LT, Proffitt JM, Melton PE, Fenstad MH, Aalto-Viljakainen T, Makikallio K, Heinonen S, Kajantie E, Kere J, Laivuori H, Austgulen R, Blangero J, Moses EK (2013) Genetic dissection of the preeclampsia susceptibility locus on chromosome 2q22 reveals shared novel risk factors for cardiovascular disease. Mol Hum Reprod 19(7):423–437. https://doi.org/10.1093/molehr/gat011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oudejans CB, Mulders J, Lachmeijer AM, van Dijk M, Konst AA, Westerman BA, van Wijk IJ, Leegwater PA, Kato HD, Matsuda T, Wake N, Dekker GA, Pals G, ten Kate LP, Blankenstein MA (2004) The parent-of-origin effect of 10q22 in preeclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas. Mol Hum Reprod 10(8):589–598. https://doi.org/10.1093/molehr/gah080

    Article  CAS  PubMed  Google Scholar 

  63. van Dijk M, Mulders J, Poutsma A, Konst AA, Lachmeijer AM, Dekker GA, Blankenstein MA, Oudejans CB (2005) Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 37(5):514–519. https://doi.org/10.1038/ng1541

    Article  CAS  PubMed  Google Scholar 

  64. Laasanen J, Hiltunen M, Romppanen EL, Punnonen K, Mannermaa A, Heinonen S (2003) Microsatellite marker association at chromosome region 2p13 in Finnish patients with preeclampsia and obstetric cholestasis suggests a common risk locus. Eur J Hum Genet 11(3):232–236. https://doi.org/10.1038/sj.ejhg.5200951

    Article  CAS  PubMed  Google Scholar 

  65. Majander KK, Villa PM, Kivinen K, Kere J, Laivuori H (2013) A follow-up linkage study of Finnish preeclampsia families identifies a new fetal susceptibility locus on chromosome 18. Eur J Hum Genet 21(9):1024–1026. https://doi.org/10.1038/ejhg.2013.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaartokallio T, Wang J, Heinonen S, Kajantie E, Kivinen K, Pouta A, Gerdhem P, Jiao H, Kere J, Laivuori H (2016) Exome sequencing in pooled DNA samples to identify maternal preeclampsia risk variants. Sci Rep 6:29085. https://doi.org/10.1038/srep29085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arngrimsson R, Hayward C, Nadaud S, Baldursdottir A, Walker JJ, Liston WA, Bjarnadottir RI, Brock DJ, Geirsson RT, Connor JM, Soubrier F (1997) Evidence for a familial pregnancy-induced hypertension locus in the eNOS-gene region. Am J Hum Genet 61(2):354–362. https://doi.org/10.1086/514843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roten LT, Johnson MP, Forsmo S, Fitzpatrick E, Dyer TD, Brennecke SP, Blangero J, Moses EK, Austgulen R (2009) Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and preeclampsia in a large Norwegian population-based study (the HUNT study). Eur J Hum Genet 17(2):250–257. https://doi.org/10.1038/ejhg.2008.158

    Article  CAS  PubMed  Google Scholar 

  69. Zintzaras E, Kitsios G, Harrison GA, Laivuori H, Kivinen K, Kere J, Messinis I, Stefanidis I, Ioannidis JP (2006) Heterogeneity-based genome search meta-analysis for preeclampsia. Hum Genet 120(3):360–370. https://doi.org/10.1007/s00439-006-0214-1

    Article  CAS  PubMed  Google Scholar 

  70. Adler D (1994) Idiogram album. http://www.pathology.washington.edu/research/cytopages/idiograms/human/. Accessed 2015

  71. Wang Q, Wang G, Guo C, Cao X, An L, Du M, Qiu Y, Yang Y, Wang Y, Wang S, Wang X, Ma X (2015) Single nucleotide polymorphisms near the inhibin beta B gene on 2q14 are associated with preeclampsia in Han Chinese women. Eur J Obstet Gynecol Reprod Biol 193:127–131. https://doi.org/10.1016/j.ejogrb.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  72. Lokki AI, Klemetti MM, Heino S, Hiltunen L, Heinonen S, Laivuori H (2011) Association of the rs1424954 polymorphism of the ACVR2A gene with the risk of preeclampsia is not replicated in a Finnish study population. BMC Res Notes 4:545. https://doi.org/10.1186/1756-0500-4-545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ferreira LC, Gomes CE, Araujo AC, Bezerra PF, Duggal P, Jeronimo SM (2015) Association between ACVR2A and early-onset preeclampsia: replication study in a Northeastern Brazilian population. Placenta 36(2):186–190. https://doi.org/10.1016/j.placenta.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  74. Zeybek B, Celik HA, Aydin HH, Askar N (2013) Polymorphisms in the activin A receptor type 2A gene affect the onset time and severity of preeclampsia in the Turkish population. J Perinat Med 41(4):389–399. https://doi.org/10.1515/jpm-2012-0187

    Article  CAS  PubMed  Google Scholar 

  75. Hill LD, Hilliard DD, York TP, Srinivas S, Kusanovic JP, Gomez R, Elovitz MA, Romero R, Strauss JF III (2011) Fetal ERAP2 variation is associated with preeclampsia in African Americans in a case-control study. BMC Med Genet 12:64. https://doi.org/10.1186/1471-2350-12-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. GOPEC Consortium (2005) Disentangling fetal and maternal susceptibility for preeclampsia: a British multicenter candidate-gene study. Am J Hum Genet 77(1):127–131. https://doi.org/10.1086/431245

    Article  PubMed Central  Google Scholar 

  77. Williams PJ, Morgan L (2012) The role of genetics in preeclampsia and potential pharmacogenomic interventions. Pharmgenomics Pers Med 5:37–51. https://doi.org/10.2147/PGPM.S23141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jebbink J, Wolters A, Fernando F, Afink G, van der Post J, Ris-Stalpers C (2012) Molecular genetics of preeclampsia and HELLP syndrome - a review. Biochim Biophys Acta 1822(12):1960–1969. https://doi.org/10.1016/j.bbadis.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  79. Roten LT, Thomsen LC, Gundersen AS, Fenstad MH, Odland ML, Strand KM, Solberg P, Tappert C, Araya E, Baerheim G, Lyslo I, Tollaksen K, Bjorge L, Austgulen R (2015) The Norwegian preeclampsia family cohort study: a new resource for investigating genetic aspects and heritability of preeclampsia and related phenotypes. BMC Pregnancy Childbirth 15:319. https://doi.org/10.1186/s12884-015-0754-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Myatt L, Redman CW, Staff AC, Hansson S, Wilson ML, Laivuori H, Poston L, Roberts JM, Global Pregnancy C (2014) Strategy for standardization of preeclampsia research study design. Hypertension 63(6):1293–1301. https://doi.org/10.1161/HYPERTENSIONAHA.113.02664

    Article  CAS  PubMed  Google Scholar 

  81. van Dijk M, van Bezu J, van Abel D, Dunk C, Blankenstein MA, Oudejans CB, Lye SJ (2010) The STOX1 genotype associated with preeclampsia leads to a reduction of trophoblast invasion by alpha-T-catenin upregulation. Hum Mol Genet 19(13):2658–2667. https://doi.org/10.1093/hmg/ddq152

    Article  CAS  PubMed  Google Scholar 

  82. Fenstad MH, Johnson MP, Loset M, Mundal SB, Roten LT, Eide IP, Bjorge L, Sande RK, Johansson AK, Dyer TD, Forsmo S, Blangero J, Moses EK, Austgulen R (2010) STOX2 but not STOX1 is differentially expressed in decidua from preeclamptic women: data from the second Nord-Trondelag health study. Mol Hum Reprod 16(12):960–968. https://doi.org/10.1093/molehr/gaq064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kivinen K, Peterson H, Hiltunen L, Laivuori H, Heino S, Tiala I, Knuutila S, Rasi V, Kere J (2007) Evaluation of STOX1 as a preeclampsia candidate gene in a population-wide sample. Eur J Hum Genet 15(4):494–497. https://doi.org/10.1038/sj.ejhg.5201788

    Article  CAS  PubMed  Google Scholar 

  84. Rigourd V, Chauvet C, Chelbi ST, Rebourcet R, Mondon F, Letourneur F, Mignot TM, Barbaux S, Vaiman D (2008) STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas. PLoS One 3(12):e3905. https://doi.org/10.1371/journal.pone.0003905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Doridot L, Passet B, Mehats C, Rigourd V, Barbaux S, Ducat A, Mondon F, Vilotte M, Castille J, Breuiller-Fouche M, Daniel N, le Provost F, Bauchet AL, Baudrie V, Hertig A, Buffat C, Simeoni U, Germain G, Vilotte JL, Vaiman D (2013) Preeclampsia-like symptoms induced in mice by fetoplacental expression of STOX1 are reversed by aspirin treatment. Hypertension 61(3):662–668. https://doi.org/10.1161/HYPERTENSIONAHA.111.202994

    Article  CAS  PubMed  Google Scholar 

  86. Ducat A, Doridot L, Calicchio R, Mehats C, Vilotte JL, Castille J, Barbaux S, Couderc B, Jacques S, Letourneur F, Buffat C, Le Grand F, Laissue P, Miralles F, Vaiman D (2016) Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia. Sci Rep 6:19196. https://doi.org/10.1038/srep19196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Doridot L, Chatre L, Ducat A, Vilotte JL, Lombes A, Mehats C, Barbaux S, Calicchio R, Ricchetti M, Vaiman D (2014) Nitroso-redox balance and mitochondrial homeostasis are regulated by STOX1, a preeclampsia-associated gene. Antioxid Redox Signal 21(6):819–834. https://doi.org/10.1089/ars.2013.5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pangas SA, Woodruff TK (2000) Activin signal transduction pathways. Trends Endocrinol Metab 11(8):309–314

    Article  CAS  PubMed  Google Scholar 

  89. Harrison CA, Gray PC, Vale WW, Robertson DM (2005) Antagonists of activin signaling: mechanisms and potential biological applications. Trends Endocrinol Metab 16(2):73–78. https://doi.org/10.1016/j.tem.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  90. Thulluru HK, Michel OJ, Oudejans CB, van Dijk M (2015) ACVR2A promoter polymorphism rs1424954 in the Activin-A signaling pathway in trophoblasts. Placenta 36(4):345–349. https://doi.org/10.1016/j.placenta.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  91. Manuelpillai U, Schneider-Kolsky M, Dole A, Wallace EM (2001) Activin A and activin receptors in gestational tissue from preeclamptic pregnancies. J Endocrinol 171(1):57–64

    Article  CAS  PubMed  Google Scholar 

  92. Yong HE, Murthi P, Kalionis B, Brennecke SP, Keogh RJ (2015) Altered activin receptor ACVR2A expression in preeclampsia contributes to abnormal placentation. Placenta 36(9):A3. https://doi.org/10.1016/j.placenta.2015.07.194

    Article  Google Scholar 

  93. Brennecke SP, Yong HE, Murthi P, Kalionis B, Cartwright JE, Keogh RJ (2016) 52 altered ACVR2A expression modifies the response of vascular endothelial cells to normotensive and preeclamptic activin a concentrations: endothelial dysfunction, anti-angiogenic factors. Pregnancy Hypertens 6(3):161. https://doi.org/10.1016/j.preghy.2016.08.053

    Article  Google Scholar 

  94. Yong HE, Melton PE, Johnson MP, Freed KA, Kalionis B, Murthi P, Brennecke SP, Keogh RJ, Moses EK (2015) Genome-wide transcriptome directed pathway analysis of maternal preeclampsia susceptibility genes. PLoS One 10(5):e0128230. https://doi.org/10.1371/journal.pone.0128230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yong HE, Murthi P, Borg A, Kalionis B, Moses EK, Brennecke SP, Keogh RJ (2014) Increased decidual mRNA expression levels of candidate maternal preeclampsia susceptibility genes are associated with clinical severity. Placenta 35(2):117–124. https://doi.org/10.1016/j.placenta.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  96. Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, Volk R, Zamborsky ED, Herman S, Sarkar PK, Ericksen MB, Dhanabal M, Simons M, Post M, Kufe DW, Weichselbaum RR, Sukhatme VP, Kalluri R (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60(9):2520–2526

    CAS  PubMed  Google Scholar 

  97. Yong HE, Murthi P, Wong MH, Kalionis B, Brennecke SP, Keogh RJ (2015) Anti-angiogenic collagen fragment arresten is increased from 16 weeks’ gestation in preeclamptic plasma. Placenta 36(11):1300–1309. https://doi.org/10.1016/j.placenta.2015.08.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah E. J. Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yong, H.E.J., Murthi, P., Brennecke, S.P., Moses, E.K. (2018). Genetic Approaches in Preeclampsia. In: Murthi, P., Vaillancourt, C. (eds) Preeclampsia . Methods in Molecular Biology, vol 1710. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7498-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7498-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7497-9

  • Online ISBN: 978-1-4939-7498-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics