Skip to main content

Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) is used by some bacteria and most archaea to protect against viral phage intrusion and has recently been adapted to allow for efficient editing of the mammalian genome. Whilst CRISPR/Cas-based technology has been used to modify genes in mammalian cells in vitro, delivery of CRISPR/Cas system into mammalian tissue and/or organs is more difficult and often requires additional vectors. With the use of adeno-associated virus (AAV) gene delivery system, active CRISPR/Cas enzyme can be maintained for an extended period of time and enable efficient editing of genome in the retina in vivo. Herein we outline the method to edit the genome in mouse retina using a dual AAV vector -mediated CRISPR/Cas9 system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiang JP, Trzupek K (2015) The current status of molecular diagnosis of inherited retinal dystrophies. Curr Opin Ophthalmol 26:346–351. https://doi.org/10.1097/ICU.0000000000000185

    Article  PubMed  Google Scholar 

  2. Hung SS, McCaughey T, Swann O et al (2016) Genome engineering in ophthalmology: application of CRISPR/Cas to the treatment of eye disease. Prog Retin Eye Res 53:1–20. https://doi.org/10.1016/j.preteyeres.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  3. McCaughey T, Sanfilippo PG, Gooden GE et al (2016) A global social media survey of attitudes to human genome editing. Cell Stem Cell 18:569–572. https://doi.org/10.1016/j.stem.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  4. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Day TP, Byrne LC, Schaffer DV et al (2014) Advances in AAV vector development for gene therapy in the retina. Adv Exp Med Biol 801:687–693. https://doi.org/10.1007/978-1-4614-3209-8_86

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hung SS, Chrysostomou V, Li F et al (2016) AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Invest Ophthalmol Vis Sci 57:3470–3476. https://doi.org/10.1167/iovs.16-19316

    Article  CAS  PubMed  Google Scholar 

  7. Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Swiech L, Heidenreich M, Banerjee A et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106. https://doi.org/10.1038/nbt.3055.

    Article  CAS  PubMed  Google Scholar 

  10. Feodorova Y, Koch M, Bultman S et al (2015) Quick and reliable method for retina dissociation and separation of rod photoreceptor perikarya from adult mice. MethodsX 2:39–46. https://doi.org/10.1016/j.mex.2015.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bui BV, Fortune B (2004) Ganglion cell contributions to the rat full-field electroretinogram. J Physiol 555(Pt 1):153–173. https://doi.org/10.1113/jphysiol.2003.052738.

    Article  CAS  PubMed  Google Scholar 

  12. Liu HH, Bui BV, Nguyen CT et al (2015) Chronic ocular hypertension induced by circumlimbal suture in rats. Invest Ophthalmol Vis Sci 56:2811–2820. https://doi.org/10.1167/iovs.14-16009

    Article  PubMed  Google Scholar 

  13. Behn D, Doke A, Racine J et al (2003) Dark adaptation is faster in pigmented than albino rats. Doc Ophthalmol 106:153–159

    Article  PubMed  Google Scholar 

  14. Hood DC, Birch DG (1994) Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci 35:2948–2961

    CAS  PubMed  Google Scholar 

  15. Fulton AB, Rushton WA (1978) Rod ERG of the mudpuppy: effect of dim red backgrounds. Vision Res 18:785–792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ian Alexander, Grant Logan, James Bender, Vicki Chrysostomou, Jeremiah Lim, Joseph Powell, Leilei Tu, Maciej Daniszewski, Camden Lo, Raymond Wong, Jonathan Crowston, and Alice Pébay. This work was supported by grants from the National Health and Medical Research Council, the Global Ophthalmology Awards Program, the Ophthalmic Research Institute of Australia, the Royal Hobart Research Foundation, the Childhood Eye Cancer Trust, and the Eye Research Australia Fund. BVB is supported by Australian Research Council Future Fellowships. AWH is supported by a National Health and Medical Research Council Practitioner Fellowship. Centre for Eye Research Australia (CERA) receives operational infrastructure support from the Victorian Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guei-Sheung Liu or Alex W. Hewitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hung, S.S. et al. (2018). Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics