Skip to main content

Estimation of GFP-Nucleoporin Amount Based on Fluorescence Microscopy

  • Protocol
  • First Online:
Book cover Schizosaccharomyces pombe

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1721))

Abstract

Cellular structures and biomolecular complexes are not simply assemblies of proteins, but are organized with defined numbers of protein molecules in precise locations. Thus, evaluating the spatial localization and numbers of protein molecules is of fundamental importance in understanding cellular structures and functions. The amounts of proteins of interest have conventionally been determined by biochemical methods. However, biochemical measurements based on the population average have limitations: it is sometimes difficult to determine the amounts of insoluble proteins or low expression proteins localized in small portions of the cell. In contrast, microphotometric measurements using fluorescence microscopes enable us to detect the amounts of such proteins in situ in a particular subcellular region. Here, we describe a method to measure the amounts of fluorescently tagged proteins by fluorescence microscopy, and present an example of an application to nuclear pore proteins in the fission yeast Schizosaccharomyces pombe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor SC, Berkelman T, Yadav G, Hammond M (2013) A defined methodology for reliable quantification of Western blot data. Mol Biotechnol 55:217–226. https://doi.org/10.1007/s12033-013-9672-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gygi SP, Rist B, Aebersold R (2000) Measuring gene expression by quantitative proteome analysis. Curr Opin Biotechnol 11:396–401

    Article  CAS  PubMed  Google Scholar 

  3. Rappsilber J, Mann M (2002) Is mass spectrometry ready for proteome-wide protein expression analysis? Genome Biol 3:COMMENT2008

    Google Scholar 

  4. Bakalarski CE, Kirkpatrick DS (2016) A biologist’s field guide to multiplexed quantitative proteomics. Mol Cell Proteomics 15:1489–1497. https://doi.org/10.1074/mcp.O115.056986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805. https://doi.org/10.1126/science.8303295

    Article  CAS  PubMed  Google Scholar 

  6. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455. https://doi.org/10.1016/S0968-0004(00)89099-4

    Article  CAS  PubMed  Google Scholar 

  7. Ding DQ, Chikashige Y, Haraguchi T, Hiraoka Y (1998) Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules as revealed by continuous observation of chromosomes and microtubules in living cells. J Cell Sci 111:701–712

    CAS  PubMed  Google Scholar 

  8. Ding DQ, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y (2006) Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. J Cell Biol 174:499–508. https://doi.org/10.1083/jcb.200605074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asakawa H, Hayashi A, Haraguchi T, Hiraoka Y (2005) Dissociation of the Nuf2-Ndc80 complex releases centromeres from the spindle-pole body during meiotic prophase in fission yeast. Mol Biol Cell 16:2325–2338. https://doi.org/10.1091/mbc.E04-11-0996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Asakawa H, Kojidani T, Mori C, Osakada H, Sato M, Ding DQ, Hiraoka Y, Haraguchi T (2010) Virtual breakdown of the nuclear envelope in fission yeast meiosis. Curr Biol 20:1919–1925. https://doi.org/10.1016/j.cub.2010.09.070

    Article  CAS  PubMed  Google Scholar 

  11. Haraguchi T, Osakada H, Koujin T (2015) Live CLEM imaging to analyze nuclear structures at high resolution. Methods Mol Biol 1262:89–103. https://doi.org/10.1007/978-1-4939-2253-6_6

    Article  CAS  PubMed  Google Scholar 

  12. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175. https://doi.org/10.1083/jcb.201002018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsuda A, Chikashige Y, Ding DQ, Ohtsuki C, Mori C, Asakawa H, Kimura H, Haraguchi T, Hiraoka Y (2015) Highly condensed chromatins are formed adjacent to subtelomeric and decondensed silent chromatin in fission yeast. Nat Commun 6:7753. https://doi.org/10.1038/ncomms8753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asakawa H, Yang HJ, Yamamoto TG, Ohtsuki C, Chikashige Y, Sakata-Sogawa K, Tokunaga M, Iwamoto M, Hiraoka Y, Haraguchi T (2014) Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe. Nucleus 5:149–162. https://doi.org/10.4161/nucl.28487

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP (2007) The molecular architecture of the nuclear pore complex. Nature 450:695–701

    Article  CAS  PubMed  Google Scholar 

  18. Grimm C, Kohli J (1988) Observations on integrative transformation in Schizosaccharomyces pombe. Mol Gen Genet 215:87–93. https://doi.org/10.1007/BF00331308

    Article  CAS  PubMed  Google Scholar 

  19. Grimm C, Kohli J, Murray J, Maundrell K (1988) Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selective marker. Mol Gen Genet 215:81–86. https://doi.org/10.1007/BF00331307

    Article  CAS  PubMed  Google Scholar 

  20. Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951. https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y

    Article  PubMed  Google Scholar 

  21. Hayashi A, Ding DQ, Tsutsumi C, Chikashige Y, Masuda H, Haraguchi T, Hiraoka Y (2009) Localization of gene products using a chromosomally tagged GFP-fusion library in the fission yeast Schizosaccharomyces pombe. Genes Cells 14:217–225. https://doi.org/10.1111/j.1365-2443.2008.01264.x

    Article  CAS  PubMed  Google Scholar 

  22. Petersen J, Russell P (2016) Growth and the environment of Schizosaccharomyces pombe. In: Hagan IM, Carr AM, Grallert A, Nurse P (eds) Fission yeast: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 13–29. https://doi.org/10.1101/pdb.top079764

    Google Scholar 

  23. Asakawa H, Hiraoka Y (2009) Live-cell fluorescence imaging of meiotic chromosome dynamics in Schizosaccharomyces pombe. Methods Mol Biol 558:53–64. https://doi.org/10.1007/978-1-60761-103-5_4

    Article  PubMed  Google Scholar 

  24. Haraguchi T, Ding DQ, Yamamoto A, Kaneda T, Koujin T, Hiraoka Y (1999) Multiple-color fluorescence imaging of chromosomes and microtubules in living cells. Cell Struct Funct 24:291–298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Kakenhi Grant Numbers, JP26440098 to H.A., JP16H01309 to Y.H., and JP25116006 to T.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokuko Haraguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Asakawa, H., Hiraoka, Y., Haraguchi, T. (2018). Estimation of GFP-Nucleoporin Amount Based on Fluorescence Microscopy. In: Singleton, T. (eds) Schizosaccharomyces pombe. Methods in Molecular Biology, vol 1721. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7546-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7546-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7545-7

  • Online ISBN: 978-1-4939-7546-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics