Skip to main content

Citrobacter rodentium Infection Model for the Analysis of Bacterial Pathogenesis and Mucosal Immunology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1725))

Abstract

Citrobacter rodentium is a mouse restricted pathogen that was originally isolated from laboratory mouse colonies and causes transmissible colonic hyperplasia, characterized by thickening of the colon and inflammation. As a natural pathogen of mice, the infection model has proven critical to the development of our understanding of the pathogenesis of enteric disease and the mucosal immune response. In addition to this, some features of disease such as dysbiosis, inflammation, and wound healing replicate features of human inflammatory bowel diseases. As such, the C. rodentium infection model has become a key tool in investigations of many aspects of mucosal immunology.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mundy R, MacDonald TT, Dougan G, Frankel G, Wiles S (2005) Citrobacter rodentium of mice and man. Cell Microbiol 7:1697–1706

    Article  CAS  PubMed  Google Scholar 

  2. Petty NK, Bulgin R, Crepin VF, Cerdeno-Tarraga AM, Schroeder GN, Quail MA et al (2010) The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol 192:525–538

    Article  CAS  PubMed  Google Scholar 

  3. Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF et al (2011) Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80:1420–1438

    Article  CAS  PubMed  Google Scholar 

  4. Iguchi A, Thomson NR, Ogura Y, Saunders D, Ooka T, Henderson IR et al (2009) Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 191:347–354

    Article  CAS  PubMed  Google Scholar 

  5. Santos AS, Finlay BB (2015) Bringing down the host: enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell Microbiol 17:318–332

    Article  CAS  PubMed  Google Scholar 

  6. Feuerbacher LA, Hardwidge PR (2014) Influence of NleH effector expression, host genetics, and inflammation on Citrobacter rodentium colonization of mice. Microbes Infect 16:429–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pearson JS, Giogha C, Muhlen S, Nachbur U, Pham CL, Zhang Y et al (2017) EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat Microbiol 2:16258

    Article  CAS  PubMed  Google Scholar 

  8. Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS et al (2013) A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501:247–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sham HP, Shames SR, Croxen MA, Ma C, Chan JM, Khan MA et al (2011) Attaching and effacing bacterial effector NleC suppresses epithelial inflammatory responses by inhibiting NF-kappaB and p38 mitogen-activated protein kinase activation. Infect Immun 79:3552–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wickham ME, Lupp C, Vazquez A, Mascarenhas M, Coburn B, Coombes BK et al (2007) Citrobacter rodentium virulence in mice associates with bacterial load and the type III effector NleE. Microbes Infect 9:400–407

    Article  CAS  PubMed  Google Scholar 

  11. Ma C, Wickham ME, Guttman JA, Deng W, Walker J, Madsen KL et al (2006) Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell Microbiol 8:1669–1686

    Article  CAS  PubMed  Google Scholar 

  12. Simmons CP, Goncalves NS, Ghaem-Maghami M, Bajaj-Elliott M, Clare S, Neves B et al (2002) Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-gamma. J Immunol 168:1804–1812

    Article  CAS  PubMed  Google Scholar 

  13. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK et al (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725

    Article  CAS  PubMed  Google Scholar 

  14. Macho-Fernandez E, Koroleva EP, Spencer CM, Tighe M, Torrado E, Cooper AM et al (2015) Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells. Mucosal Immunol 8:403–413

    Article  CAS  PubMed  Google Scholar 

  15. Tumanov AV, Koroleva EP, Guo X, Wang Y, Kruglov A, Nedospasov S et al (2011) Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10:44–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289

    Article  CAS  PubMed  Google Scholar 

  17. Rankin LC, Girard-Madoux MJ, Seillet C, Mielke LA, Kerdiles Y, Fenis A et al (2016) Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 17:179–186

    Article  CAS  PubMed  Google Scholar 

  18. Spehlmann ME, Dann SM, Hruz P, Hanson E, McCole DF, Eckmann L (2009) CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. J Immunol 183:3332–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Koroleva EP, Kruglov AA, Kuprash DV, Nedospasov SA, YX F et al (2010) Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 32:403–413

    Article  PubMed  PubMed Central  Google Scholar 

  20. Geddes K, Rubino SJ, Magalhaes JG, Streutker C, Le Bourhis L, Cho JH et al (2011) Identification of an innate T helper type 17 response to intestinal bacterial pathogens. Nat Med 17:837–844

    Article  CAS  PubMed  Google Scholar 

  21. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y et al (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119

    Article  CAS  PubMed  Google Scholar 

  22. Backert I, Koralov SB, Wirtz S, Kitowski V, Billmeier U, Martini E et al (2014) STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis. J Immunol 193:3779–3791

    Article  CAS  PubMed  Google Scholar 

  23. Basu R, O'Quinn DB, Silberger DJ, Schoeb TR, Fouser L, Ouyang W et al (2012) Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37:1061–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simmons CP, Clare S, Ghaem-Maghami M, Uren TK, Rankin J, Huett A et al (2003) Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun 71:5077–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keeney KM, Yurist-Doutsch S, Arrieta MC, Finlay BB (2014) Effects of antibiotics on human microbiota and subsequent disease. Annu Rev Microbiol 68:217–235

    Article  CAS  PubMed  Google Scholar 

  26. Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB et al (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 12:612–623

    Article  CAS  PubMed  Google Scholar 

  27. Ghaem-Maghami M, Simmons CP, Daniell S, Pizza M, Lewis D, Frankel G et al (2001) Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium. Infect Immun 69:5597–5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiles S, Clare S, Harker J, Huett A, Young D, Dougan G et al (2004) Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol 6:963–972

    Article  CAS  PubMed  Google Scholar 

  29. Luperchio SA, Newman JV, Dangler CA, Schrenzel MD, Brenner DJ, Steigerwalt AG et al (2000) Citrobacter rodentium, the causative agent of transmissible murine colonic hyperplasia, exhibits clonality: synonymy of C. rodentium and mouse-pathogenic Escherichia coli. J Clin Microbiol 38:4343–4350

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakagawa M, Sakazaki R, Muto T, Saito M, Hagiwara T (1969) Infectious megaenteron of mice. II Detection of coliform organisms of an unusual biotype as the primary cause. Jpn J Med Sci Biol 22:375–382

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Hartland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kennedy, C.L., Hartland, E.L. (2018). Citrobacter rodentium Infection Model for the Analysis of Bacterial Pathogenesis and Mucosal Immunology. In: Jenkins, B. (eds) Inflammation and Cancer. Methods in Molecular Biology, vol 1725. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7568-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7568-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7567-9

  • Online ISBN: 978-1-4939-7568-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics