Skip to main content

Stimulation of Primary Auditory Neurons Mediated by Near-Infrared Excitation of Gold Nanorods

  • Protocol
  • First Online:
Use of Nanoparticles in Neuroscience

Part of the book series: Neuromethods ((NM,volume 135))

Abstract

Neural stimulation plays an important role in achieving therapeutic interactions with both the central and peripheral nervous systems, and forms the basis of neural prostheses such as cochlear implants and pacemakers. The interactions are commonly based on electrical stimulation delivered by microelectrodes, which are implanted in the vicinity of the target tissue. Electrical stimulation has limited selectivity, as the resolution of the stimulus is degraded by current spread. Moreover, the implantation may cause injury to the target tissue and the host inflammatory response can reduce stability. In order to improve the performance of neural interfaces, optical stimulation is attracting increasing attention, based on techniques such as optogenetics, photoactive molecules, and infrared neural stimulation. However, optical techniques at present tend to rely on visible or infrared wavelengths that have a limited penetration in tissue. Alternatively, the near-infrared region, corresponding to the therapeutic window in tissue, can be accessed by two-photon stimulation with relatively expensive light sources, or by the introduction of extrinsic light absorbers. For the latter approach, gold nanorods have recently been shown to provide efficient stimulation in a range of cell types, when exposed to near infrared light. Given the wide range of surface functionalizations and relatively low toxicity of gold, this approach is expected to draw increasing interest in the field of neural stimulation. This Method describes experimental procedures that have been used to prepare primary auditory neurons with gold nanorods for near-infrared excitation. It is anticipated that these procedures could be adapted to a range of related neural stimulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol Lond 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newbold C, Richardson R, Millard R, Seligman P, Cowan R, Shepherd R (2011) Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes. J Neural Eng 8(3):036029–036029. https://doi.org/10.1088/1741-2560/8/3/036029

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wells JD, Cayce JM, Mahadevan-Jansen A, Konrad PE, Jansen ED (2011) Infrared nerve stimulation: a novel therapeutic laser modality. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Springer, Netherlands, pp 915–939. https://doi.org/10.1007/978-90-481-8831-4_24

    Google Scholar 

  4. Richter CP, Matic AI, Wells JD, Jansen ED, Walsh JT (2011) Neural stimulation with optical radiation. Laser Photonics Rev 5(1):68–80. https://doi.org/10.1002/lpor.200900044

    Article  CAS  Google Scholar 

  5. Roggan A, Friebel M, Dörschel K, Hahn A, Müller G (1999) Optical properties of circulating human blood in the wavelength range 400-2500 nm. J Biomed Opt 4(1):36–46. https://doi.org/10.1117/1.429919

    Article  CAS  PubMed  Google Scholar 

  6. Shapiro MG, Homma K, Villarreal S, Richter C-P, Bezanilla F (2012) Infrared light excites cells by changing their electrical capacitance. Nat Commun 3:736. https://doi.org/10.1038/ncomms1742

    Article  PubMed  PubMed Central  Google Scholar 

  7. Albert ES, Bec JM, Desmadryl G, Chekroud K, Travo C, Gaboyard S, Bardin F, Marc I, Dumas M, Lenaers G, Hamel C, Muller A, Chabbert C (2012) TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol 107(12):3227–3234. https://doi.org/10.1152/jn.00424.2011

    Article  CAS  PubMed  Google Scholar 

  8. Thompson AC, Wade SA, Brown WGA, Stoddart PR (2012) Modeling of light absorption in tissue during infrared neural stimulation. J Biomed Opt 17(7):075002–075002. https://doi.org/10.1117/1.jbo.17.7.075002

    Article  PubMed  Google Scholar 

  9. Thompson AC, Wade SA, Cadusch PJ, Brown WG, Stoddart PR (2013) Modeling of the temporal effects of heating during infrared neural stimulation. J Biomed Opt 18(3):035004

    Article  PubMed  Google Scholar 

  10. Migliori B, Di Ventra M, Kristan W (2012) Photoactivation of neurons by laser-generated local heating. AIP Adv 2(3):032154. https://doi.org/10.1063/1.4748955

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  CAS  PubMed  Google Scholar 

  12. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417. https://doi.org/10.1562/2005-12-14-ra-754

    Article  CAS  PubMed  Google Scholar 

  13. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248. https://doi.org/10.1021/jp057170o

    Article  CAS  PubMed  Google Scholar 

  14. Dykman LA, Khlebtsov NG (2014) Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 114(2):1258–1288. https://doi.org/10.1021/cr300441a

    Article  CAS  PubMed  Google Scholar 

  15. Choi WI, Sahu A, Kim YH, Tae G (2011) Photothermal cancer therapy and imaging based on gold nanorods. Ann Biomed Eng 40(2):534–546. https://doi.org/10.1007/s10439-011-0388-0

    Article  PubMed  Google Scholar 

  16. Paviolo C, Haycock JW, Yong J, Yu A, Stoddart PR, McArthur SL (2013) Laser exposure of gold nanorods can increase neuronal cell outgrowth. Biotechnol Bioeng 110(8):2277–2291. https://doi.org/10.1002/bit.24889

    Article  CAS  PubMed  Google Scholar 

  17. Paviolo C, Haycock JW, Cadusch PJ, McArthur SL, Stoddart PR (2014) Laser exposure of gold nanorods can induce intracellular calcium transients. J Biophotonics 7(10):761–765. https://doi.org/10.1002/jbio.201300043

    Article  CAS  PubMed  Google Scholar 

  18. Yong J, Needham K, Brown WGA, Nayagam BA, McArthur SL, Yu A, Stoddart PR (2014) Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv Healthc Mater 3(11):1862–1868. https://doi.org/10.1002/adhm.201400027

    Article  CAS  PubMed  Google Scholar 

  19. Eom K, Kim J, Choi JM, Kang T, Chang JW, Byun KM, Jun SB, Kim SJ (2014) Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 10(19):3853–3857. https://doi.org/10.1002/smll.201400599

    Article  CAS  PubMed  Google Scholar 

  20. Nakatsuji H, Numata T, Morone N, Kaneko S, Mori Y, Imahori H, Murakami T (2015) Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles. Angew Chem Int Ed 54(40):11725–11729. https://doi.org/10.1002/anie.201505534

    Article  CAS  Google Scholar 

  21. Yao J, Liu B, Qin F (2009) Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. Biophys J 96(9):3611–3619. https://doi.org/10.1016/j.bpj.2009.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Needham K, Nayagam BA, Minter RL, O’Leary SJ (2012) Combined application of brain-derived neurotrophic factor and neurotrophin-3 and its impact on spiral ganglion neuron firing properties and hyperpolarization-activated currents. Hear Res 291(1–2):1–14. https://doi.org/10.1016/j.heares.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  23. Brown WGA, Needham K, Nayagam BA, Stoddart PR (2013) Whole cell patch clamp for investigating the mechanisms of infrared neural stimulation. JoVE (77). https://doi.org/10.3791/50444

  24. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901. https://doi.org/10.1016/j.ccr.2005.01.030

    Article  Google Scholar 

  25. Hauck TS, Ghazani AA, Chan WCW (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4(1):153–159. https://doi.org/10.1002/smll.200700217

    Article  CAS  PubMed  Google Scholar 

  26. Hu X, Gao X (2011) Multilayer coating of gold nanorods for combined stability and biocompatibility. Phys Chem Chem Phys 13(21):10028–10035. https://doi.org/10.1039/c0cp02434a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen HY, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42(7):2679–2724. https://doi.org/10.1039/C2CS35367A

    Article  CAS  PubMed  Google Scholar 

  28. Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DWH, Cohen Y, Emili A, Chan WCW (2014) Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8(3):2439–2455. https://doi.org/10.1021/nn406018q

    Article  CAS  PubMed  Google Scholar 

  29. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9(4):1651–1658. https://doi.org/10.1021/nl900034v

    Article  CAS  PubMed  Google Scholar 

  30. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12(3):555–563. https://doi.org/10.1364/AO.12.000555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Stoddart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paviolo, C., Needham, K., Brown, W.G.A., Yong, J., Stoddart, P.R. (2018). Stimulation of Primary Auditory Neurons Mediated by Near-Infrared Excitation of Gold Nanorods. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics