Skip to main content

Laser Ablation of Microtubule–Chromosome Attachment in Mouse Oocytes

  • Protocol
  • First Online:
Mouse Oocyte Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1818))

Abstract

Laser ablation is a powerful tool to study forces within biological systems. This technique has been extensively used to study mitotic spindle formation and chromosome segregation. This chapter describes laser ablation of microtubule–chromosome attachments coupled to fluorescence live microscopy and quantitative analysis of individual chromosome movement after microtubule severing. This method allows to gain insight into the organization and dynamics of the meiotic spindle and chromosomes in metaphase I mouse oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennabi I, Terret M-E, Verlhac M-H (2016) Meiotic spindle assembly and chromosome segregation in oocytes. J Cell Biol 215:611–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dumont J, Desai A (2012) Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol 22:241–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bringmann H, Hyman AA (2005) A cytokinesis furrow is positioned by two consecutive signals. Nature 436:731–734

    Article  PubMed  CAS  Google Scholar 

  4. Grill SW, Gönczy P, Stelzer EH et al (2001) Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409:630–633

    Article  PubMed  CAS  Google Scholar 

  5. Riche S, Zouak M, Argoul F et al (2013) Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos. J Cell Biol 201:653–662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tolić-Nørrelykke IM, Sacconi L, Thon G et al (2004) Positioning and elongation of the fission yeast spindle by microtubule-based pushing. Curr Biol 14:1181–1186

    Article  PubMed  CAS  Google Scholar 

  7. Brugués J, Nuzzo V, Mazur E et al (2012) Nucleation and transport organize microtubules in metaphase spindles. Cell 149:554–564

    Article  PubMed  CAS  Google Scholar 

  8. Cojoc G, Roscioli E, Zhang L et al (2016) Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J Cell Biol 212:767–776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Elting MW, Hueschen CL, Udy DB et al (2014) Force on spindle microtubule minus ends moves chromosomes. J Cell Biol 206:245–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kajtez J, Solomatina A, Novak M et al (2016) Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores. Nat Commun 7:10298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Khodjakov A, La Terra S, Chang F (2004) Laser microsurgery in fission yeast; role of the mitotic spindle midzone in anaphase B. Curr Biol 14:1330–1340

    Article  PubMed  CAS  Google Scholar 

  12. Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167:831–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sikirzhytski V, Magidson V, Steinman JB et al (2014) Direct kinetochore-spindle pole connections are not required for chromosome segregation. J Cell Biol 206:231–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nakagawa S, FitzHarris G (2016) Quantitative microinjection of Morpholino antisense oligonucleotides into mouse oocytes to examine gene function in meiosis-I. Methods Mol Biol Clifton NJ 1457:217–230

    Article  CAS  Google Scholar 

  15. Chaigne A, Campillo C, Gov NS et al (2015) A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte. Nat Commun 6:6027

    Article  CAS  PubMed  Google Scholar 

  16. Breuer M, Kolano A, Kwon M et al (2010) HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J Cell Biol 191:1251–1260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Reis A, Chang H-Y, Levasseur M et al (2006) APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat Cell Biol 8:539–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dumont J, Petri S, Pellegrin F et al (2007) A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176:295–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hached K, Xie SZ, Buffin E et al (2011) Mps1 at kinetochores is essential for female mouse meiosis I. Development 138:2261–2271

    Article  PubMed  CAS  Google Scholar 

  20. Schuh M, Ellenberg J (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498

    Article  CAS  PubMed  Google Scholar 

  21. Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146:568–581

    Article  CAS  PubMed  Google Scholar 

  22. de CF, Dallongeville S, Chenouard N et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isma Bennabi or Marion Manil-Ségalen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bennabi, I., Manil-Ségalen, M. (2018). Laser Ablation of Microtubule–Chromosome Attachment in Mouse Oocytes. In: Verlhac, MH., Terret, ME. (eds) Mouse Oocyte Development. Methods in Molecular Biology, vol 1818. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8603-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8603-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8602-6

  • Online ISBN: 978-1-4939-8603-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics