Skip to main content

The Assembly of Fluorescently Labeled Peptide–Oligonucleotide Conjugates via Orthogonal Ligation Strategies

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Efficient intracellular delivery is critical to the successful application of synthetic antisense oligonucleotides (ASOs) to modulate gene expression. The conjugation of cell-penetrating peptides (CPPs) to ASOs has been shown to significantly improve their intracellular delivery. It is important, however, that formation of the covalent linkage between the peptide and oligonucleotide is efficient and orthogonal, to ensure high yields and a homogeneous product. Described herein are efficient and facile methodologies for the conjugation of peptides to ASOs, and their subsequent labeling with various moieties such as fluorescent dyes for intracellular tracking studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aartsma-Rus A, Krieg AM (2017) FDA approves Eteplirsen for Duchenne muscular dystrophy: the next chapter in the Eteplirsen saga. Nucleic Acids Ther 27(1):1–3. https://doi.org/10.1089/nat.2016.0657

    Article  CAS  Google Scholar 

  2. Biogen (2016) SPINRAZA_READINESS. http://www.spinraza-hcpcom

  3. Betts C, Saleh AF, Arzumanov AA et al (2012) Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucleic Acids 1:e38. https://doi.org/10.1038/mtna.2012.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saleh AF, Arzumanov AA, Yin H et al (2011) Enhancement of exon skipping and dystrophin production by 3′-peptide conjugates of morpholino (PMO) oligonucleotides in a mdx mouse model of Duchenne muscular dystrophy. Collection symposium series. Chem Nucl Acid Comp 12:292–296

    Article  CAS  Google Scholar 

  5. Shabanpoor F, McClorey G, Saleh AF et al (2015) Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy. Nucleic Acids Res 43(1):29–39. https://doi.org/10.1093/nar/gku1256

    Article  CAS  PubMed  Google Scholar 

  6. Hammond SM, Hazell G, Shabanpoor F et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 113(39):10962–10967. https://doi.org/10.1073/pnas.1605731113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yin H, Saleh AF, Betts C et al (2011) Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol Ther 19(7):1295–1303. https://doi.org/10.1038/mt.2011.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boisguerin P, Deshayes S, Gait MJ et al (2015) Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev 87:52–67. https://doi.org/10.1016/j.addr.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boisguerin P, O'Donovan L, Gait MJ et al (2015) In vitro assays to assess exon skipping in Duchenne muscular dystrophy. Methods Mol Biol 1324:317–329. https://doi.org/10.1007/978-1-4939-2806-4_20

    Article  PubMed  Google Scholar 

  10. Lehto T, Ezzat K, Wood MJ et al (2016) Peptides for nucleic acid delivery. Adv Drug Deliv Rev 106(Pt A):172–182. https://doi.org/10.1016/j.addr.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  11. Shabanpoor F, Hammond SM, Abendroth F et al (2017) Identification of a peptide for systemic brain delivery of a Morpholino oligonucleotide in mouse models of spinal muscular atrophy. Nucleic Acids Ther 27(3):130–143. https://doi.org/10.1089/nat.2016.0652

    Article  CAS  Google Scholar 

  12. Shabanpoor F, Gait MJ (2013) Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry. Chem Commun (Camb) 49(87):10260–10262. https://doi.org/10.1039/c3cc46067c

    Article  CAS  Google Scholar 

  13. Said Hassane F, Saleh AF, Abes R et al (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67(5):715–726. https://doi.org/10.1007/s00018-009-0186-0

    Article  CAS  PubMed  Google Scholar 

  14. Farrelly-Rosch A, Lau CL, Patil N et al (2017) Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochem Int 108:213–221. https://doi.org/10.1016/j.neuint.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  15. Ulrich S, Boturyn D, Marra A et al (2014) Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry 20(1):34–41. https://doi.org/10.1002/chem.201302426

    Article  CAS  PubMed  Google Scholar 

  16. Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126(46):15046–15047. https://doi.org/10.1021/ja044996f

    Article  CAS  PubMed  Google Scholar 

  17. Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130(41):13518–13519. https://doi.org/10.1021/ja8053805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koniev O, Wagner A (2015) Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 44(15):5495–5551. https://doi.org/10.1039/c5cs00048c

    Article  CAS  PubMed  Google Scholar 

  19. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by MND Research Institute of Australia (MNDRIA GIA-1722), National Health and Medical Research Council (Project Grant 1104299), and the Stafford Fox Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazel Shabanpoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karas, J., Turner, B.J., Shabanpoor, F. (2018). The Assembly of Fluorescently Labeled Peptide–Oligonucleotide Conjugates via Orthogonal Ligation Strategies. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics