Skip to main content

Visualization and Tools for Analysis of Zebrafish Lymphatic Development

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1846))

Abstract

The accessibility and optical transparency of the zebrafish embryo offers a unique platform for live-imaging of developmental lymphangiogenesis. Transgenic lines labelling lymphatic progenitors and vessels enable researchers to visualize cellular processes and ask how they contribute to lymphatic development in genetic models. Furthermore, validated immunofluorescence staining for key signaling and cell fate markers (phosphorylated Erk and Prox1) allow single cell resolution studies of lymphatic differentiation. Here, we describe in detail how zebrafish embryos and larvae can be mounted for high resolution, staged imaging of lymphatic networks, how lymphangiogenesis can be reliably quantified and how immunofluorescence can reveal lymphatic signaling and differentiation. These methods offer researchers the opportunity to experimentally dissect developmental lymphangiogenesis with outstanding resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12(6):711–716. https://doi.org/10.1038/nm1427

    Article  CAS  PubMed  Google Scholar 

  2. Kuchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H, Schulte-Merker S (2006) Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol 16(12):1244–1248. https://doi.org/10.1016/j.cub.2006.05.026

    Article  CAS  PubMed  Google Scholar 

  3. Koltowska K, Lagendijk AK, Pichol-Thievend C, Fischer JC, Francois M, Ober EA, Yap AS, Hogan BM (2015) Vegfc regulates bipotential precursor division and Prox1 expression to promote lymphatic identity in zebrafish. Cell Rep 13(9):1828–1841. https://doi.org/10.1016/j.celrep.2015.10.055

    Article  CAS  PubMed  Google Scholar 

  4. Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y, Mayseless O, Gibbs-Bar L, Senderovich N, Hashimshony T, Shin M, Jerafi-Vider A, Avraham-Davidi I, Krupalnik V, Hofi R, Almog G, Astin JW, Golani O, Ben-Dor S, Crosier PS, Herzog W, Lawson ND, Hanna JH, Yanai I, Yaniv K (2015) Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522(7554):56–61. https://doi.org/10.1038/nature14425

    Article  CAS  PubMed  Google Scholar 

  5. Okuda KS, Astin JW, Misa JP, Flores MV, Crosier KE, Crosier PS (2012) Lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 139(13):2381–2391. https://doi.org/10.1242/dev.077701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Flores MV, Hall CJ, Crosier KE, Crosier PS (2010) Visualization of embryonic lymphangiogenesis advances the use of the zebrafish model for research in cancer and lymphatic pathologies. Dev Dyn 239(7):2128–2135. https://doi.org/10.1002/dvdy.22328

    Article  CAS  PubMed  Google Scholar 

  7. van Impel A, Zhao Z, Hermkens DM, Roukens MG, Fischer JC, Peterson-Maduro J, Duckers H, Ober EA, Ingham PW, Schulte-Merker S (2014) Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 141(6):1228–1238. https://doi.org/10.1242/dev.105031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunworth WP, Cardona-Costa J, Bozkulak EC, Kim JD, Meadows S, Fischer JC, Wang Y, Cleaver O, Qyang Y, Ober EA, Jin SW (2014) Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ Res 114(1):56–66. https://doi.org/10.1161/CIRCRESAHA.114.302452

    Article  CAS  PubMed  Google Scholar 

  9. Astin JW, Haggerty MJ, Okuda KS, Le Guen L, Misa JP, Tromp A, Hogan BM, Crosier KE, Crosier PS (2014) Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development 141(13):2680–2690. https://doi.org/10.1242/dev.106591

    Article  CAS  PubMed  Google Scholar 

  10. Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, Bower NI, van Impel A, Stacker SA, Achen MG, Schulte-Merker S, Hogan BM (2014) Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141(6):1239–1249. https://doi.org/10.1242/dev.100495

    Article  CAS  PubMed  Google Scholar 

  11. Villefranc JA, Nicoli S, Bentley K, Jeltsch M, Zarkada G, Moore JC, Gerhardt H, Alitalo K, Lawson ND (2013) A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development. Development 140(7):1497–1506. https://doi.org/10.1242/dev.084152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bower NI, Vogrin AJ, Le Guen L, Chen H, Stacker SA, Achen MG, Hogan BM (2017) Vegfd modulates both angiogenesis and lymphangiogenesis during zebrafish embryonic development. Development 144(3):507–518. https://doi.org/10.1242/dev.146969

    Article  CAS  PubMed  Google Scholar 

  13. Hogan BM, Herpers R, Witte M, Helotera H, Alitalo K, Duckers HJ, Schulte-Merker S (2009) Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development 136(23):4001–4009. https://doi.org/10.1242/dev.039990

    Article  CAS  PubMed  Google Scholar 

  14. Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, Holmberg EE, Mannens MM, Mulder MF, Offerhaus GJ, Prescott TE, Schroor EJ, Verheij JB, Witte M, Zwijnenburg PJ, Vikkula M, Schulte-Merker S, Hennekam RC (2009) Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet 41(12):1272–1274. https://doi.org/10.1038/ng.484

    Article  CAS  PubMed  Google Scholar 

  15. Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, Schulte-Merker S (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet 41(4):396–398. https://doi.org/10.1038/ng.321

    Article  CAS  PubMed  Google Scholar 

  16. Sakamoto Y, Hara K, Kanai-Azuma M, Matsui T, Miura Y, Tsunekawa N, Kurohmaru M, Saijoh Y, Koopman P, Kanai Y (2007) Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos. Biochem Biophys Res Commun 360(3):539–544. https://doi.org/10.1016/j.bbrc.2007.06.093

    Article  CAS  PubMed  Google Scholar 

  17. Herpers R, van de Kamp E, Duckers HJ, Schulte-Merker S (2008) Redundant roles for sox7 and sox18 in arteriovenous specification in zebrafish. Circ Res 102(1):12–15. https://doi.org/10.1161/CIRCRESAHA.107.166066

    Article  CAS  PubMed  Google Scholar 

  18. Cermenati S, Moleri S, Cimbro S, Corti P, Del Giacco L, Amodeo R, Dejana E, Koopman P, Cotelli F, Beltrame M (2008) Sox18 and Sox7 play redundant roles in vascular development. Blood 111(5):2657–2666. https://doi.org/10.1182/blood-2007-07-100412

    Article  CAS  PubMed  Google Scholar 

  19. Matsui T, Kanai-Azuma M, Hara K, Matoba S, Hiramatsu R, Kawakami H, Kurohmaru M, Koopman P, Kanai Y (2006) Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J Cell Sci 119(Pt 17):3513–3526. https://doi.org/10.1242/jcs.03081

    Article  CAS  PubMed  Google Scholar 

  20. Coxam B, Sabine A, Bower NI, Smith KA, Pichol-Thievend C, Skoczylas R, Astin JW, Frampton E, Jaquet M, Crosier PS, Parton RG, Harvey NL, Petrova TV, Schulte-Merker S, Francois M, Hogan BM (2014) Pkd1 regulates lymphatic vascular morphogenesis during development. Cell Rep 7(3):623–633. https://doi.org/10.1016/j.celrep.2014.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koltowska K, Paterson S, Bower NI, Baillie GJ, Lagendijk AK, Astin JW, Chen H, Francois M, Crosier PS, Taft RJ, Simons C, Smith KA, Hogan BM (2015) Mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev 29(15):1618–1630. https://doi.org/10.1101/gad.263210.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morooka N, Futaki S, Sato-Nishiuchi R, Nishino M, Totani Y, Shimono C, Nakano I, Nakajima H, Mochizuki N, Sekiguchi K (2017) Polydom is an extracellular matrix protein involved in lymphatic vessel remodeling. Circ Res 120(8):1276–1288. https://doi.org/10.1161/CIRCRESAHA.116.308825

    Article  CAS  PubMed  Google Scholar 

  23. Karpanen T, Padberg Y, van de Pavert SA, Dierkes C, Morooka N, Peterson-Maduro J, van de Hoek G, Adrian M, Mochizuki N, Sekiguchi K, Kiefer F, Schulte D, Schulte-Merker S (2017) An evolutionarily conserved role for Polydom/Svep1 during lymphatic vessel formation. Circ Res 120(8):1263–1275. https://doi.org/10.1161/CIRCRESAHA.116.308813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290. https://doi.org/10.1242/dev.00733

    Article  CAS  PubMed  Google Scholar 

  25. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318

    Article  CAS  Google Scholar 

  26. Lam EY, Hall CJ, Crosier PS, Crosier KE, Flores MV (2010) Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood 116(6):909–914. https://doi.org/10.1182/blood-2010-01-264382

    Article  CAS  PubMed  Google Scholar 

  27. Astin JW, Jamieson SM, Eng TC, Flores MV, Misa JP, Chien A, Crosier KE, Crosier PS (2014) An in vivo antilymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis. Mol Cancer Ther 13(10):2450–2462. https://doi.org/10.1158/1535-7163.MCT-14-0469-T

    Article  CAS  PubMed  Google Scholar 

  28. Bower NI, Koltowska K, Pichol-Thievend C, Virshup I, Paterson S, Lagendijk AK, Wang W, Lindsey BW, Bent SJ, Baek S, Rondon-Galeano M, Hurley DG, Mochizuki N, Simons C, Francois M, Wells CA, Kaslin J, Hogan BM (2017) Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat Neurosci 20(6):774–783. https://doi.org/10.1038/nn.4558

    Article  CAS  PubMed  Google Scholar 

  29. Bussmann J, Bos FL, Urasaki A, Kawakami K, Duckers HJ, Schulte-Merker S (2010) Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 137(16):2653–2657. https://doi.org/10.1242/dev.048207

    Article  CAS  PubMed  Google Scholar 

  30. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A 105(4):1255–1260. https://doi.org/10.1073/pnas.0704963105

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jung HM, Castranova D, Swift MR, Pham VN, Venero Galanternik M, Isogai S, Butler MG, Mulligan TS, Weinstein BM (2017) Development of the larval lymphatic system in zebrafish. Development 144(11):2070–2081. https://doi.org/10.1242/dev.145755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shin M, Male I, Beane TJ, Villefranc JA, Kok FO, Zhu LJ, Lawson ND (2016) Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development 143(20):3785–3795. https://doi.org/10.1242/dev.137901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  34. Shin M, Beane TJ, Quillien A, Male I, Zhu LJ, Lawson ND (2016) Vegfa signals through ERK to promote angiogenesis, but not artery differentiation. Development 143(20):3796–3805. https://doi.org/10.1242/dev.137919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inoue D, Wittbrodt J (2011) One for all--a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One 6(5):e19713. https://doi.org/10.1371/journal.pone.0019713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilting J, Papoutsi M, Christ B, Nicolaides KH, von Kaisenberg CS, Borges J, Stark GB, Alitalo K, Tomarev SI, Niemeyer C, Rossler J (2002) The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased human tissues. FASEB J 16(10):1271–1273. https://doi.org/10.1096/fj.01-1010fje

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Tevin Chau and Dr. Neil Bower for their technical assistance. The IF protocol for phosphorylated Erk and Prox1 is our own modified version of protocols originally carefully optimized and published by Professor Nathan Lawson and Dr. Masahiro Shin from the University of Massachusetts Medical School [32, 34] and by Professor Joachim Wittbrodt and Dr. Daigo Inoue from the Heidelberg University [35].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Hogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okuda, K.S., Baek, S., Hogan, B.M. (2018). Visualization and Tools for Analysis of Zebrafish Lymphatic Development. In: Oliver, G., Kahn, M. (eds) Lymphangiogenesis. Methods in Molecular Biology, vol 1846. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8712-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8712-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8711-5

  • Online ISBN: 978-1-4939-8712-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics