Skip to main content

Metabolomic Investigation of Staphylococcus aureus Antibiotic Susceptibility by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry

  • Protocol
  • First Online:
Functional Proteomics

Abstract

Staphylococcus aureus is a major human pathogen that can readily acquire antibiotic resistance. For instance, methicillin-resistant S. aureus represents a major cause of hospital- and community-acquired bacterial infections. In this chapter, we first provide a detailed protocol for obtaining unbiased and reproducible S. aureus metabolic profiles. The resulting intracellular metabolome is then analyzed in an untargeted manner by using both hydrophilic interaction liquid chromatography and pentafluorophenyl-propyl columns coupled to high-resolution mass spectrometry. Such analyses are done in conjunction with our in-house spectral database to identify with high confidence as many meaningful S. aureus metabolites as possible. Under these conditions, we can routinely monitor more than 200 annotated S. aureus metabolites. We also indicate how this protocol can be used to investigate the metabolic differences between methicillin-resistant and susceptible strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  CAS  Google Scholar 

  2. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641

    Article  CAS  Google Scholar 

  3. Gardete S, Tomasz A (2014) Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 124:2836–2840

    Article  CAS  Google Scholar 

  4. Chastre J, Blasi F, Masterton RG et al (2014) European perspective and update on the management of nosocomial pneumonia due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 20(Suppl 4):19–36

    CAS  Google Scholar 

  5. Hassoun A, Linden PK, Friedman B (2017) Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit Care Lond Engl 21:211

    Article  Google Scholar 

  6. Boucher HW, Corey GR (2008) Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis Off Publ Infect Dis Soc Am 46(Suppl 5):S344–S349

    Article  Google Scholar 

  7. Sommer MOA, Dantas G (2011) Antibiotics and the resistant microbiome. Curr Opin Microbiol 14:556–563

    Article  CAS  Google Scholar 

  8. Munck C, Gumpert HK, Wallin AIN et al (2014) Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci Transl Med 6:262ra156

    Article  Google Scholar 

  9. Belenky P, Ye JD, Porter CBM et al (2015) Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep 13:968–980

    Article  CAS  Google Scholar 

  10. Ling LL, Schneider T, Peoples AJ et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  Google Scholar 

  11. Liebeke M, Meyer H, Donat S et al (2010) A metabolomic view of Staphylococcus aureus and its ser/thr kinase and phosphatase deletion mutants: involvement in cell wall biosynthesis. Chem Biol 17:820–830

    Article  CAS  Google Scholar 

  12. Ammons MCB, Tripet BP, Carlson RP et al (2014) Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes. J Proteome Res 13:2973–2985

    Article  CAS  Google Scholar 

  13. Dörries K, Schlueter R, Lalk M (2014) Impact of antibiotics with various target sites on the metabolome of Staphylococcus aureus. Antimicrob Agents Chemother 58:7151–7163

    Article  Google Scholar 

  14. Aros-Calt S, Muller BH, Boudah S et al (2015) Annotation of the Staphylococcus aureus Metabolome using liquid chromatography coupled to high-resolution mass spectrometry and application to the study of methicillin resistance. J Proteome Res 14:4863–4875

    Article  CAS  Google Scholar 

  15. Schelli K, Zhong F, Zhu J (2017) Comparative metabolomics revealing Staphylococcus aureus metabolic response to different antibiotics. Microb Biotechnol 10:1764–1774

    Article  CAS  Google Scholar 

  16. Keaton MA, Rosato RR, Plata KB et al (2013) Exposure of clinical MRSA heterogeneous strains to β-lactams redirects metabolism to optimize energy production through the TCA cycle. PLoS One 8:e71025

    Article  CAS  Google Scholar 

  17. Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3:211–221

    Article  CAS  Google Scholar 

  18. Liebeke M, Lalk M (2014) Staphylococcus aureus metabolic response to changing environmental conditions—a metabolomics perspective. Int J Med Microbiol 304:222–229

    Article  CAS  Google Scholar 

  19. Boudah S, Olivier M-F, Aros-Calt S et al (2014) Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 966:34–47

    Article  CAS  Google Scholar 

  20. Martano G, Delmotte N, Kiefer P et al (2015) Fast sampling method for mammalian cell metabolic analyses using liquid chromatography-mass spectrometry. Nat Protoc 10:1–11

    Article  CAS  Google Scholar 

  21. Naz S, Vallejo M, García A et al (2014) Method validation strategies involved in non-targeted metabolomics. J Chromatogr A 1353:99–105

    Article  CAS  Google Scholar 

  22. Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083

    Article  CAS  Google Scholar 

  23. Dunn WB, Wilson ID, Nicholls AW et al (2012) The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 4:2249–2264

    Article  CAS  Google Scholar 

  24. Giacomoni F, Le Corguillé G, Monsoor M et al (2015) Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31:1493–1495

    Article  CAS  Google Scholar 

  25. Guitton Y, Tremblay-Franco M, Le Corguillé G et al (2017) Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. Int J Biochem Cell Biol 93:89–101

    Article  CAS  Google Scholar 

  26. Roux A, Xu Y, Heilier J-F et al (2012) Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-Orbitrap mass spectrometer. Anal Chem 84:6429–6437

    Article  CAS  Google Scholar 

  27. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  Google Scholar 

  28. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human Metabolome database. Nucleic Acids Res 35:D521–D526

    Article  CAS  Google Scholar 

  29. Smith CA, O’Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  Google Scholar 

  30. Meyer H, Liebeke M, Lalk M (2010) A protocol for the investigation of the intracellular Staphylococcus aureus metabolome. Anal Biochem 401:250–259

    Article  CAS  Google Scholar 

  31. Chapman AG, Fall L, DE A (1971) Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108:1072–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  32. van der Werf MJ, Overkamp KM, Muilwijk B et al (2008) Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. Mol BioSyst 4:315–327

    Article  Google Scholar 

  33. Stuani L, Lechaplais C, Salminen AV et al (2014) Novel metabolic features in Acinetobacter baylyi ADP1 revealed by a multiomics approach. Metabolomics 10:1223–1238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by bioMérieux S.A. and the Association Nationale de la Recherche et de la Technologie (ANRT). S.A.-C. is the recipient of a CIFRE fellowship (grant number 2011/1474). This work was also supported by the Commissariat à l’Energie Atomique et aux Energies Alternatives and the MetaboHUB infrastructure (ANR-11-INBS-0010 grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fenaille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aros-Calt, S. et al. (2019). Metabolomic Investigation of Staphylococcus aureus Antibiotic Susceptibility by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. In: Wang, X., Kuruc, M. (eds) Functional Proteomics. Methods in Molecular Biology, vol 1871. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8814-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8814-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8813-6

  • Online ISBN: 978-1-4939-8814-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics