Skip to main content

Reconstituting Autophagy Initiation from Purified Components

  • Protocol
  • First Online:
Autophagy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1880))

Abstract

The hallmark of macroautophagy is the de novo generation of a membrane structure that collects cytoplasmic material and delivers it to lysosomes for degradation. The nucleation of this precursor membrane, termed phagophore, involves the coordinated assembly of the Atg1-kinase complex and the recruitment of Atg9 vesicles. The latter represents one important membrane source in order to produce phagophores in vivo. We explain how the process of phagophore nucleation can be reconstituted from purified components in vitro. We describe the assembly of the ~500 kDa pentameric Atg1-kinase complex from its purified subunits. We also explain how Atg9-donor vesicles are generated in vitro to study the interaction of Atg9 and Atg1-kinase complexes by floatation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reggiori F, Klionsky DJ (2005) Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17(4):415–422

    Article  CAS  Google Scholar 

  2. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822. https://doi.org/10.1038/ncb0910-814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41. https://doi.org/10.1038/cr.2013.168

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre- autophagosomal structure organization. Genes Cells 12(2):209–218. https://doi.org/10.1111/j.1365-2443.2007.01050.x

    Article  CAS  PubMed  Google Scholar 

  5. Kawamata T, Kamada Y, Kabeya Y, Sekito T, Ohsumi Y (2008) Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19(5):2039–2050. https://doi.org/10.1091/mbc.E07-10-1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y (2009) Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14(5):525–538. https://doi.org/10.1111/j.1365-2443.2009.01299.x

    Article  CAS  PubMed  Google Scholar 

  7. Kabeya Y, Noda NN, Fujioka Y, Suzuki K, Inagaki F, Ohsumi Y (2009) Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation- induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun 389(4):612–615. https://doi.org/10.1016/j.bbrc.2009.09.034

    Article  CAS  PubMed  Google Scholar 

  8. Kamada Y, Yoshino K-I, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30(4):1049–1058. https://doi.org/10.1128/MCB.01344-09

    Article  CAS  PubMed  Google Scholar 

  9. Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y (2005) Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell 16(5):2544–2553. https://doi.org/10.1091/mbc.E04-08-0669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamada Y (2010) Prime-numbered Atg proteins act at the primary step in autophagy: unphosphorylatable Atg13 can induce autophagy without TOR inactivation. Autophagy 6(3):415–416

    Article  Google Scholar 

  11. Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y, Hirano H et al (2014) Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol 21(6):513–521. https://doi.org/10.1038/nsmb.2822

    Article  CAS  PubMed  Google Scholar 

  12. Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190(6):1005–1022. https://doi.org/10.1083/jcb.200912089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C et al (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198(2):219–233. https://doi.org/10.1083/jcb.201202061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen WL et al (2011) SNARE proteins are required for macroautophagy. Cell 146(2):290–302. https://doi.org/10.1016/j.cell.2011.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao Y, Perna MG, Hofmann B, Beier V, Wollert T (2016b) The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy. Nat Commun 7:10338. https://doi.org/10.1038/ncomms10338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matscheko N, Mayrhofer P, Wollert T (2017) Passing membranes to autophagy: unconventional membrane tethering by Atg17. Autophagy 13(3):629–630. https://doi.org/10.1080/15548627.2016.1276678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rao Y, Matscheko N, Wollert T (2016a) Autophagy in the test tube in vitro reconstitution of aspects of autophagosome biogenesis. FEBS J 283(11):2034–2043. https://doi.org/10.1111/febs.13661

    Article  CAS  PubMed  Google Scholar 

  18. Tan S (2001) A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr Purif 21(1):224–234. https://doi.org/10.1006/prep.2000.1363

    Article  CAS  PubMed  Google Scholar 

  19. Scholz J, Besir H, Strasser C, Suppmann S (2013) A new method to customize protein expression vectors for fast, efficient and background free parallel cloning. BMC Biotechnol 13(1):12. https://doi.org/10.1186/1472-6750-13-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kijanska M, Dohnal I, Reiter W, Kaspar S, Stoffel I, Ammerer G et al (2010) Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy 6(8):1168–1178. https://doi.org/10.4161/auto.6.8.13849

    Article  CAS  PubMed  Google Scholar 

  21. Bieniossek C, Richmond TJ, Berger I (2001) MultiBac: multigene baculovirus-based eukaryotic protein complex production, vol 21. John Wiley & Sons, Inc., Hoboken, NJ, pp 5.20.1–5.20.26. https://doi.org/10.1002/0471140864.ps0520s51

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wollert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mayrhofer, P., Wollert, T. (2019). Reconstituting Autophagy Initiation from Purified Components. In: Ktistakis, N., Florey, O. (eds) Autophagy. Methods in Molecular Biology, vol 1880. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8873-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8873-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8872-3

  • Online ISBN: 978-1-4939-8873-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics