Skip to main content

AFM to Study Pore-Forming Proteins

  • Protocol
  • First Online:
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1886))

Abstract

Atomic force microscopy (AFM) is a form of contact microscopy that uses a very sharp tip to scan the surface of a sample. It provides a 3D image of the surface structure and in the force mode it can also be used to test the mechanical properties of the sample. AFM has been successfully applied to study the molecular mechanism of pore-forming proteins on model membranes. It gives information about both the structural reorganization of the membrane surface and the changes in the force required for membrane piercing upon incubation with this special type of proteins. Here we describe robust protocols to investigate the effect of pore-forming proteins in supported lipid bilayers .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morris VJ, Kirby AR, Gunning AP (2010) Atomic force microscopy for biologists, 2nd edn. Imperial College Press, London

    Google Scholar 

  2. Hansma PK, Elings VB, Marti O, Bracker CE (1988) Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science 242:209–216. https://doi.org/10.1126/science.3051380

    Article  CAS  PubMed  Google Scholar 

  3. Goksu EI, Vanegas JM, Blanchette CD, Lin W-C, Longo ML (2009) AFM for structure and dynamics of biomembranes. BBA-Biomembranes 1788(1):254–266. https://doi.org/10.1016/j.bbamem.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  4. Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry-US 47:7986–7998. https://doi.org/10.1021/bi800753x

    Article  CAS  Google Scholar 

  5. Fradin C, Satsoura D, Andrews DW (2009) Punching holes in membranes: how oligomeric pore-forming proteins and lipids cooperate to form aqueous channels in membranes, Handbook of modern biophysics, vol vol. 2. Humana Press, New York, pp 223–262. https://doi.org/10.1007/978-1-60761-314-5_9

    Book  Google Scholar 

  6. Bischofberger M, Iacovache I, van der Goot FG (2012) Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12(3):266–275. https://doi.org/10.1016/j.chom.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  7. Iacovache I, Bischofberger M, van der Goot FG (2010) Structure and assembly of pore-forming proteins. Curr Opin Struct Biol 20(2):241–246. https://doi.org/10.1016/j.sbi.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  8. Pipkin ME, Lieberman J (2007) Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 19(3):301–308. https://doi.org/10.1016/j.coi.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  9. Bubeck D (2014) The making of a macromolecular machine: assembly of the membrane attack complex. Biochemistry-US 53(12):1908–1915. https://doi.org/10.1021/bi500157z

    Article  CAS  Google Scholar 

  10. Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis of complement membrane attack complex formation. Nat Commun 7:10587. https://doi.org/10.1038/ncomms10587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cosentino K, Garcia-Saez AJ (2014) Mitochondrial alterations in apoptosis. Chem Phys Lipids 181:62–75. https://doi.org/10.1016/j.chemphyslip.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  13. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22(12):1577–1590. https://doi.org/10.1101/gad.1658508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cosentino K, Ros U, Garcia-Saez AJ (2016) Assembling the puzzle: oligomerization of alpha-pore forming proteins in membranes. Biochim Biophys Acta 1858(3):457–466. https://doi.org/10.1016/j.bbamem.2015.09.013

    Article  CAS  PubMed  Google Scholar 

  15. Ros U, Garcia-Saez AJ (2015) More than a pore: the interplay of pore-forming proteins and lipid membranes. J Membr Biol 248(3):545–561. https://doi.org/10.1007/s00232-015-9820-y

    Article  CAS  PubMed  Google Scholar 

  16. Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry-US 39:8347–8352

    Article  CAS  Google Scholar 

  17. Xu XP, Zhai D, Kim E, Swift M, Reed JC, Volkmann N, Hanein D (2013) Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis 4:e683. https://doi.org/10.1038/cddis.2013.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88(1):91–142. https://doi.org/10.1016/j.pbiomolbio.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  19. Sonnen AF, Plitzko JM, Gilbert RJ (2014) Incomplete pneumolysin oligomers form membrane pores. Open Biol 4:140044. https://doi.org/10.1098/rsob.140044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Metkar SS, Marchioretto M, Antonini V, Lunelli L, Wang B, Gilbert RJ, Anderluh G, Roth R, Pooga M, Pardo J, Heuser JE, Serra MD, Froelich CJ (2015) Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes. Cell Death Differ 22(1):74–85. https://doi.org/10.1038/cdd.2014.110

    Article  CAS  PubMed  Google Scholar 

  21. Salvador-Gallego R, Mund M, Cosentino K, Schneider J, Unsay J, Schraermeyer U, Engelhardt J, Ries J, Garcia-Saez AJ (2016) Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J 35(4):389–401. https://doi.org/10.15252/embj.201593384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castellana ET, Cremer PS (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61(10):429–444. https://doi.org/10.1016/j.surfrep.2006.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frederix PLTM, Bosshart PD, Engel A (2009) Atomic force microscopy of biological membranes. Biophys J 96(2):329–338. https://doi.org/10.1016/j.bpj.2008.09.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mennicke U, Salditt T (2002) Preparation of solid-supported lipid bilayers by spin-coating. Langmuir 18:8172–8177. https://doi.org/10.1021/la025863f

    Article  CAS  Google Scholar 

  25. Yilmaz N, Kobayashi T (2016) Assemblies of pore-forming toxins visualized by atomic force microscopy. Biochim Biophys Acta 1858(3):500–511. https://doi.org/10.1016/j.bbamem.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  26. Mou J, Yang J, Shao Z (1995) Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J Mol Biol 248:507–512

    Article  CAS  PubMed  Google Scholar 

  27. Epand RF, Martinou J-C, Montessuit S, Epand RM, Yip CM (2002) Direct evidence of membrane pore formation by the apoptotic protein Bax. Biochem Biophys Res Commun 298:744–749

    Article  CAS  PubMed  Google Scholar 

  28. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215. https://doi.org/10.1038/sj.emboj.7600350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yilmaz N, Kobayashi T (2015) Visualization of lipid membrane reorganization induced by a pore-forming toxin using high-speed atomic force microscopy. ACS Nano 9:7960–7967

    Article  CAS  PubMed  Google Scholar 

  30. Unsay J, Cosentino K, Garcia-Saez AJ (2015) Atomic force microscopy imaging and force spectroscopy of supported lipid bilayers. J Vis Exp 101:e52867. https://doi.org/10.3791/52867

    Article  CAS  Google Scholar 

  31. Canale C, Jacono M, Diaspro A, Dante S (2010) Force spectroscopy as a tool to investigate the properties of supported lipid membranes. Microsc Res Tech 73(10):965–972. https://doi.org/10.1002/jemt.20834

    Article  CAS  PubMed  Google Scholar 

  32. Redondo-Morata L, Giannotti MI, Sanz F (2012) Stability of lipid bilayers as model membranes: atomic force microscopy and spectroscopy approach. In: Baró AM, Reifenberger RG (eds) Atomic force microscopy in liquid: biological applications, 1st edn. Wiley-VCH Verlag GmbH, Weinheim. https://doi.org/10.1002/9783527649808.ch10

    Chapter  Google Scholar 

  33. Butt H-J, Franz V (2002) Rupture of molecular thin films observed in atomic force microscopy I. Theory Phys Rev E 66:031601. https://doi.org/10.1103/PhysRevE.66.031601

    Article  CAS  Google Scholar 

  34. Unsay JD, Cosentino K, Sporbeck K, Garcia-Saez AJ (2017) Pro-apoptotic cBid and Bax exhibit distinct membrane remodeling activities: an AFM study. BBA-Biomembranes 1859:17–27. https://doi.org/10.1016/j.bbamem.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  35. Gräslund S, Nordlund P, Weigelt J, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, Dhe-Paganon S, Park H-W, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim S-H, Rao Z, Shi Y, Terwilliger TC, Kim C-Y, Hung L-W, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schütz A, Heinemann U, Yokoyama S, Büssow K, Gunsalus KC (2008) Protein production and purification. Nat Methods 5(2):135–146. https://doi.org/10.1038/nmeth.f.202

    Article  PubMed  Google Scholar 

  36. Subburaj Y, Cosentino K, Axmann M, Pedrueza-Villalmanzo E, Hermann E, Bleicken S, Spatz J, Garcia-Saez AJ (2015) Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat Commun 6:8042. https://doi.org/10.1038/ncomms9042

    Article  CAS  PubMed  Google Scholar 

  37. Bleicken S, Jeschke G, Stegmueller C, Salvador-Gallego R, García-Sáez Ana J, Bordignon E (2014) Structural model of active Bax at the membrane. Mol Cell 56:496. https://doi.org/10.1016/j.molcel.2014.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou J-C (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Subburaj Y (2014) Single particle tracking to characterize the mechanism of pore formation by pore-forming proteins. University of Tübingen, Tübingen

    Google Scholar 

  40. Shamas-Din A, Binder S, Zhu W, Zaltsman Y, Campbell C, Gross A, Leber B, Andrews DW, Fradin C (2013) tBid undergoes multiple conformational changes at the membrane required for Bax activation. J Biol Chem 288(30):22111–22127. https://doi.org/10.1074/jbc.M113.482109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B, Andrews DW (2008) Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135(6):1074–1084. https://doi.org/10.1016/j.cell.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  42. Burnham NA, Chen X, Hodges CS, Matei GA, Thoreson EJ, Roberts CJ, Davies MC, Tendler SJB (2002) Comparison of calibration methods for atomic-force microscopy. Nanotechnology 14:1–6

    Article  Google Scholar 

  43. Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66(7):3789. https://doi.org/10.1063/1.1145439

    Article  CAS  Google Scholar 

  44. Miller EJ, Trewby W, Payam AF, Piantanida L, Cafolla C, Voitchovsky K (2016) Sub-nanometer resolution imaging with amplitude-modulation atomic force microscopy in liquid. J Vis Exp:e54924. https://doi.org/10.3791/54924

  45. Alessandrini A, Seeger Heiko M, Caramaschi T, Facci P (2012) Dynamic force spectroscopy on supported lipid bilayers: effect of temperature and sample preparation. Biophys J 103(1):38–47. https://doi.org/10.1016/j.bpj.2012.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana J. García-Sáez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Unsay, J.D., García-Sáez, A.J. (2019). AFM to Study Pore-Forming Proteins. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics