Skip to main content

Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction

  • Protocol
  • First Online:
Computational Methods for Drug Repurposing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1903))

Abstract

The drug discovery process is conventionally regarded as resource intensive and complex. Therefore, research effort has been put into a process called drug repositioning with the use of computational methods. Similarity-based methods are common in predicting drug-target association or the interaction between drugs and targets based on various features the drugs and targets have. Heterogeneous network topology involving many biomedical entities interactions has yet to be used in drug-target association. Deep learning can disclose features of vertices in a large network, which can be incorporated with heterogeneous network topology in order to assist similarity-based solutions to provide more flexibility for drug-target prediction. Here we describe a similarity-based drug-target prediction method that utilizes a topology-based similarity measure and two inference methods based on the similarities. We used DeepWalk, a deep learning method, to calculate the vertex similarities based on Linked Tripartite Network (LTN), which is a heterogeneous network created from different biomedical-linked datasets. The similarities are further used to feed to the inference methods, drug-based similarity inference (DBSI) and target-based similarity inference (TBSI), to obtain the predicted drug-target associations. Our previous experiments have shown that by utilizing deep learning and heterogeneous network topology, the proposed method can provide more promising results than current topology-based similarity computation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yıldırım MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Drug—target network. Nat Biotechnol 25(10):1119–1126

    Article  Google Scholar 

  2. Vogt I, Mestres J (2010) Drug-target networks. Mol Inform 29(1-2):10–14

    Article  CAS  Google Scholar 

  3. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682

    Article  CAS  Google Scholar 

  4. Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8(5):e1002503

    Article  CAS  Google Scholar 

  5. Ding H, Takigawa I, Mamitsuka H, Zhu S (2014) Similarity-based machine learning methods for predicting drug–target interactions: a brief review. Brief Bioinform 15(5):734–747

    Article  Google Scholar 

  6. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13):i232–i240

    Article  CAS  Google Scholar 

  7. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75

    Article  Google Scholar 

  8. Zhu S, Okuno Y, Tsujimoto G, Mamitsuka H (2005) A probabilistic model for mining implicit ‘chemical compound–gene’relations from literature. Bioinformatics 21(suppl 2):ii245–ii251

    Article  CAS  Google Scholar 

  9. Perlman L, Gottlieb A, Atias N, Ruppin E, Sharan R (2011) Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol 18(2):133–145

    Article  CAS  Google Scholar 

  10. Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12):i246–i254

    Article  CAS  Google Scholar 

  11. Bleakley K, Yamanishi Y (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25(18):2397–2403

    Article  CAS  Google Scholar 

  12. Jacob L, Vert J-P (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19):2149–2156

    Article  CAS  Google Scholar 

  13. Palma G, Vidal M-E, Raschid L (2014) Drug-target interaction prediction using semantic similarity and edge partitioning. In: International semantic web conference. Springer, pp 131–146

    Google Scholar 

  14. Wang W, Yang S, Li J (2013) Drug target predictions based on heterogeneous graph inference. In: Pacific symposium on biocomputing. Pacific symposium on biocomputing. NIH Public Access, p 53

    Google Scholar 

  15. Chen X, Liu M-X, Yan G-Y (2012) Drug–target interaction prediction by random walk on the heterogeneous network. Mol BioSyst 8(7):1970–1978

    Article  CAS  Google Scholar 

  16. Chen B, Ding Y, Wild DJ (2012) Assessing drug target association using semantic linked data. PLoS Comput Biol 8(7):e1002574

    Article  CAS  Google Scholar 

  17. Tang J, Qu M, Wang M, Zhang M, Yan J, Line MQ (2015) Large-scale information network embedding. In: Proceedings of the 24th international conference on world wide web. ACM, pp 1067–1077

    Google Scholar 

  18. Perozzi B, Al-Rfou R, Deepwalk SS (2014) Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 701–710

    Google Scholar 

  19. Bizer C, Heath T, Berners-Lee T (2009) Linked data-the story so far. In: Semantic services, interoperability and web applications: emerging concepts, pp 205–227

    Google Scholar 

  20. Bass JIF, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJ (2013) Using networks to measure similarity between genes: association index selection. Nat Methods 10(12):1169–1176

    Article  CAS  Google Scholar 

  21. Zong N, Kim H, Ngo V, Harismendy O (2017) Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 33(15):2337–2344

    Article  Google Scholar 

  22. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(suppl 1):D901–D906

    Article  CAS  Google Scholar 

  23. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) The human disease network. Proc Natl Acad Sci 104(21):8685–8690

    Article  CAS  Google Scholar 

  24. Belleau F, Nolin M-A, Tourigny N, Rigault P, Morissette J (2008) Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J Biomed Inform 41(5):706–716

    Article  Google Scholar 

  25. Consortium U (2008) The universal protein resource (UniProt). Nucleic Acids Res 36(suppl 1):D190–D195

    Google Scholar 

  26. Povey S, Lovering R, Bruford E, Wright M, Lush M, Wain H (2001) The HUGO gene nomenclature committee (HGNC). Hum Genet 109(6):678–680

    Article  CAS  Google Scholar 

  27. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33(suppl 1):D514–D517

    CAS  PubMed  Google Scholar 

  28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  29. Volz J, Bizer C, Gaedke M, Kobilarov G (2009) Silk-a link discovery framework for the web of data. LDOW 538

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zong, N., Wong, R.S.N., Ngo, V. (2019). Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction. In: Vanhaelen, Q. (eds) Computational Methods for Drug Repurposing. Methods in Molecular Biology, vol 1903. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8955-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8955-3_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8954-6

  • Online ISBN: 978-1-4939-8955-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics