Skip to main content

Symmetry-Protected Topological Phases

  • Chapter
  • First Online:
Quantum Information Meets Quantum Matter

Part of the book series: Quantum Science and Technology ((QST))

  • 4459 Accesses

Abstract

Short-range entangled states can all be connected to each other through local unitary transformations and hence belong to the same phase. However, if certain symmetry is required, they break into different phases. First of all, the symmetry can be spontaneously broken in the ground state leading to symmetry-breaking phases. Even when the ground state remains symmetric, there can be different symmetry-protected topological (SPT) phases, whose nontrivial nature is reflected in their symmetry-protected degenerate or gapless edge states. In this chapter, we discuss these phases in detail. Using the matrix product state formalism, we completely classify SPT phases in 1D boson/spin systems. By mapping 1D fermion systems to spin systems through Jordan–Wigner transformation, we obtain a classification for fermionic SPT phases as well. In 2D, the tensor product representation falls short of firmly establishing a complete classification. But we present an exactly solvable construction of SPT phase with \(\mathbb {Z}_2\) symmetry, which can be generalized to any internal symmetry and in any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \(\mathbb {Z}_2\) operation u is necessary in the definition of parity if we want to consider for example, fixed-point state with \(|EP\rangle =|00\rangle +|11\rangle \) be to parity symmetric. The state is not invariant after exchange of sites, and only maps back to itself if in addition the two spins on each site are also exchanged with u.

  2. 2.

    The mapping actually reduces T(CZX, CZX) to \(-T(I)\). But this is not a problem as we can redefine \(\tilde{T}(CZX)=iT(CZX)\) and the extra minus sign would disappear.

References

  1. Affleck, I., Kennedy, T., Lieb, E. H., & Tasaki, H. (1987, August). Rigorous results on valence-bond ground states in antiferromagnets. Physical Review Letters, 59, 799–802.

    Google Scholar 

  2. Affleck, I., Kennedy, T., Lieb, E. H., & Tasaki, H. (1988, September). Valence bond ground states in isotropic quantum antiferromagnets. Communications in Mathematical Physics, 115, 477–528.

    Google Scholar 

  3. Andrei Bernevig, B., Hughes, T. L., & Zhang, S.-C. (2006). Quantum spin hall effect and topological phase transition in HgTe Quantum Wells. Science, 314(5806), 1757–1761.

    Google Scholar 

  4. Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., et al. (2009). Experimental realization of a three-dimensional topological insulator, bi2te3. Science, 325(5937), 178–181.

    Google Scholar 

  5. Chen, X., Gu, Z.-C., & Wen, X.-G. (2011, January). Classification of gapped symmetric phases in one-dimensional spin systems. Physical Review B, 83(3), 035107.

    Google Scholar 

  6. Chen, X., Gu, Z.-C., & Wen, X.-G. (2011, December). Complete classification of one-dimensional gapped quantum phases in interacting spin systems. Physical Review B, 84, 235128.

    Google Scholar 

  7. Chen, X., Liu, Z.-X., & Wen, X.-G. (2011, December). Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations. Physical Review B, 84(23), 235141-.

    Google Scholar 

  8. Chen, X., Gu, Z.-C., Liu, Z.-X., & Wen, X.-G. (2012). Symmetry-protected topological orders in interacting Bosonic systems. Science, 338(6114), 1604–1606.

    Google Scholar 

  9. Chen, X., Gu, Z.-C., Liu, Z.-X., & Wen, X.-G. (2013, April). Symmetry protected topological orders and the group cohomology of their symmetry group. Physical Review B, 87, 155114.

    Google Scholar 

  10. den Nijs, M., & Rommelse, K. (1989, September). Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Physical Review B, 40, 4709–4734.

    Google Scholar 

  11. Duncan, F., & Haldane, M. (1983). Continuum dynamics of the 1-D heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Physics Letters A, 93, 464.

    Article  ADS  MathSciNet  Google Scholar 

  12. Fidkowski, L., & Kitaev, A. Y. (2010, April). Effects of interactions on the topological classification of free fermion systems. Physical Review B, 81(13), 134509.

    Google Scholar 

  13. Fidkowski, L., & Kitaev, A. Y. (2011, February). Topological phases of fermions in one dimension. Physical Review B, 83(7), 075103.

    Google Scholar 

  14. Fu, L., Kane, C. L., & Mele, E. J. (2007). Topological insulators in three dimensions. Physical Review Letters, 98, 106803.

    Google Scholar 

  15. Glarum, S. H., Geschwind, S., Lee, K. M., Kaplan, M. L., & Michel, J. (1991, September). Observation of fractional spin \(S= 1/2\) on open ends of \(S=1\) linear antiferromagnetic chains: Nonmagnetic doping. Physical Review Letters, 67, 1614–1617.

    Google Scholar 

  16. Gu, Z.-C., & Wen, X.-G. (2009, October). Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Physical Review B, 80(15), 155131.

    Google Scholar 

  17. Gu, Z.-C., & Wen, X.-G. (2014, September). Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear \(\sigma \) models and a special group supercohomology theory. Physical Review B, 90, 115141.

    Google Scholar 

  18. Hastings, M. B. (2004, March). Lieb-Schultz-Mattis in higher dimensions. Physical Review B, 69, 104431.

    Google Scholar 

  19. Haegeman, J., PĂ©rez-GarcĂ­a, D., Cirac, I., & Schuch, N. (2012, July). Order parameter for symmetry-protected phases in one dimension. Physical Review Letters, 109, 050402.

    Google Scholar 

  20. Hagiwara, M., Katsumata, K., Affleck, I., Halperin, B. I., & Renard, J. P. (1990, December). Observation of \(S=1/2\) degrees of freedom in an \(S=1\) linear-chain Heisenberg antiferromagnet. Physical Review Letters, 65, 3181–3184.

    Google Scholar 

  21. Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., et al. (2008, April). A topological dirac insulator in a quantum spin hall phase. Nature, 452(7190), 970–974.

    Google Scholar 

  22. Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., et al. (2009, July). A tunable topological insulator in the spin helical dirac transport regime. Nature, 460(7259), 1101–1105.

    Google Scholar 

  23. Kane, C. L., & Mele, E. J. (2005). \({Z}_2\) topological order and the quantum spin hall effect. Physical Review Letters, 95, 146802.

    Google Scholar 

  24. Kapustin, A., Thorngren, R., Turzillo, A., & Wang, Z. (2014, June). Fermionic symmetry protected topological phases and cobordisms. arXiv:1406.7329.

  25. Kennedy, T., & Tasaki, H. (1992, January). Hidden z2*z2 symmetry breaking in haldane-gap antiferromagnets. Physical Review B, 45, 304–307.

    Google Scholar 

  26. Kitaev, A. Y. (2001). Unpaired majorana fermions in quantum wires. PhysicsUspekhi, 44(10S), 131–136.

    Google Scholar 

  27. Kitaev, A. Y. (2009). Periodic table for topological insulators and superconductors. AIP Conference Proceedings, 1134(1), 22–30.

    Google Scholar 

  28. König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., et al. (2007, November). Quantum spin hall insulator state in HgTe quantum wells. Science, 318(5851), 766–770.

    Google Scholar 

  29. Lieb, E., Schultz, T., & Mattis, D. (1961, December). Two soluble models of an antiferromagnetic chain. Annals of Physics, 16, 407–466.

    Google Scholar 

  30. Moore, J. E., & Balents, L. (2007). Topological invariants of time-reversal-invariant band structures. Physical Review B, 75, 121306.

    Article  ADS  Google Scholar 

  31. Ng, T.-K. (1994, July). Edge states in antiferromagnetic quantum spin chains. Physical Review B, 50, 555–558.

    Google Scholar 

  32. Pirvu, B., Murg, V., Cirac, J. I., & Verstraete, F. (2010). Matrix product operator representations. New Journal of Physics, 12(2), 025012.

    Article  ADS  MathSciNet  Google Scholar 

  33. Pollmann, F., & Turner, A. M. (2012, September). Detection of symmetry-protected topological phases in one dimension. Physical Review B, 86, 125441.

    Google Scholar 

  34. Pollmann, F., Turner, A. M., Berg, E., & Oshikawa, M. (2010, February). Entanglement spectrum of a topological phase in one dimension. Physical Review B, 81, 064439.

    Google Scholar 

  35. Pollmann, F., Berg, E., Turner, A. M., & Oshikawa, M. (2012, February). Symmetry protection of topological phases in one-dimensional quantum spin systems. Physical Review B, 85, 075125.

    Google Scholar 

  36. Roy, R. (2009, May). Topological phases and the quantum spin hall effect in three dimensions. Physical Review B, 79, 195322.

    Google Scholar 

  37. Schnyder, A. P., Ryu, S., Furusaki, A., & Ludwig, A. W. W. (2008, November). Classification of topological insulators and superconductors in three spatial dimensions. Physical Review B, 78(19), 195125.

    Google Scholar 

  38. Schuch, N., PĂ©rez-GarcĂ­a, D., & Cirac, I. (2011, October). Classifying quantum phases using matrix product states and projected entangled pair states. Physical Review B, 84, 165139.

    Google Scholar 

  39. Turner, A. M., Pollmann, F., & Berg, E. (2011, February). Topological phases of one-dimensional fermions: An entanglement point of view. Physical Review B, 83(7), 075102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, B., Chen, X., Zhou, DL., Wen, XG. (2019). Symmetry-Protected Topological Phases. In: Quantum Information Meets Quantum Matter. Quantum Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9084-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9084-9_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9082-5

  • Online ISBN: 978-1-4939-9084-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics