Skip to main content

Isolation and Propagation of Mammary Epithelial Stem and Progenitor Cells

  • Protocol
  • First Online:
Mouse Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1940))

Abstract

Several methods of mammary gland dissociation have been described that utilize a combined strategy of mechanical and enzymatic dissociation to isolate mammary epithelial cells (MECs) from intact tissue (Smalley et al., J Mammary Gland Biol Neoplasia 17:91–97, 2012). Here we detail a robust method that enables the isolation of all major stem and progenitor MEC populations, which has been successfully used to study stem cell behavior when coupled with transplantation and in vitro assays (Shackleton et al., Nature 439:84–88, 2006; Bouras et al., Cell Stem Cell 3:429–441, 2008; Sheridan et al., BMC Cancer 15:221, 2015; Jamieson et al., Development 144:1065–1071, 2017). Furthermore, we outline two prominent methods for culturing MECs for the purposes of ex vivo manipulation or study: 2D feeder layer cultures and 3D Matrigel colony assays. Importantly, all outlined methods retain stem and progenitor cell behaviors and can be used in combination with downstream in vivo, in vitro, or in silico analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visvader JE, Stingl J (2014) Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes & Dev 28:1143–1158.

    Article  CAS  Google Scholar 

  2. Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88.

    Article  CAS  Google Scholar 

  3. Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997.

    Article  CAS  Google Scholar 

  4. Sleeman KE, Kendrick H, Robertson D et al (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 176:19–26.

    Article  CAS  Google Scholar 

  5. Fu NY, Rios AC, Pal B et al (2017) Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nat Cell Biol 19:164–176.

    Article  CAS  Google Scholar 

  6. Asselin-Labat M-L, Sutherland KD, Barker H et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209.

    Article  CAS  Google Scholar 

  7. Bouras T, Pal B, Vaillant F et al (2008) Notch Signaling Regulates Mammary Stem Cell Function and Luminal Cell-Fate Commitment. Cell Stem Cell 3:429–441.

    Article  CAS  Google Scholar 

  8. Sheridan JM, Ritchie ME, Best SA et al (2015) A pooled shRNA screen for regulators of primary mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 15, 221.

    Article  Google Scholar 

  9. Jamieson PR, Dekkers JF, Rios AC et al (2017) Derivation of a robust mouse mammary organoid system for studying tissue dynamics. Development 144:1065–1071.

    Article  CAS  Google Scholar 

  10. Smalley MJ, Kendrick H, Sheridan JM et al (2012) Isolation of Mouse Mammary Epithelial Subpopulations: A Comparison of Leading Methods. J Mammary Gland Biol Neoplasia 17:91–97.

    Article  Google Scholar 

  11. Pal B, Bouras T, Shi W et al (2013) Global changes in the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell Rep 3:411–426.

    Article  CAS  Google Scholar 

  12. Asselin-Labat M-L, Sutherland KD, Vaillant F et al (2011) Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol Cell Biol 31:4609–4622.

    Article  CAS  Google Scholar 

  13. Li W, Ferguson BJ, Khaled WT et al (2009) PML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool. Proc Natl Acad Sci USA 106:4725–4730.

    Article  CAS  Google Scholar 

  14. Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ (1989) Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Visvader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sheridan, J.M., Visvader, J.E. (2019). Isolation and Propagation of Mammary Epithelial Stem and Progenitor Cells. In: Bertoncello, I. (eds) Mouse Cell Culture. Methods in Molecular Biology, vol 1940. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9086-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9086-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9085-6

  • Online ISBN: 978-1-4939-9086-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics