Skip to main content

Measuring the Metabolic Activity of Mature Mycobacterial Biofilms Using Isothermal Microcalorimetry

  • Protocol
  • First Online:
Microcalorimetry of Biological Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1964))

Abstract

Measuring metabolic activity and response of biofilm to different conditions or compounds is of general interest but is also expected to help in developing new antibiofilm compounds and potentially new treatments. Current culture-based and microscopic methods although of much use have several drawbacks. Isothermal calorimetry can be useful in this context by allowing measurements of the metabolic activity of biofilm grown and maintained on solid medium. Biofilms prepared on membranes were placed in calorimetry vials containing solid medium. Sealed vials were introduced in an isothermal calorimeter, and the rate of metabolic heat production was monitored over time. We chose mycobacteria as an example for this paper as working with mycobacterial biofilms is notoriously difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  2. Sutherland IW (2001) The biofilm matrix - an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  CAS  Google Scholar 

  3. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  Google Scholar 

  4. Costerton J, Montanaro L, Arciola CR (2007) Bacterial communications in implant infections: a target for an intelligence war. Int J Artif Organs 30:757–763

    Article  CAS  Google Scholar 

  5. Costerton JW, Montanaro L, Arciola CR (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28:1062–1068

    Article  CAS  Google Scholar 

  6. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  Google Scholar 

  7. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  Google Scholar 

  8. Guimond-Lischer S, Ren Q, Braissant O, Gruner P, Wampfler B, Maniura-Weber K (2016) Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants. Biointerphases 11:011012

    Article  Google Scholar 

  9. Braissant O, Chavanne P, de Wild M, Pieles U, Stevanovic S, Schumacher R, Straumann L, Wirz D, Gruner P, Bachmann A, Bonkat G (2015) Novel microcalorimetric assay for antibacterial activity of implant coatings: The cases of silver-doped hydroxyapatite and calcium hydroxide. J Biomed Mater Res 103:1161–1167

    Article  CAS  Google Scholar 

  10. Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Daniels AU, Wirz D, Weiger R, Waltimo T (2011) Quantification of vital adherent Streptococcus sanguinis cells on protein-coated titanium after disinfectant treatment. J Mater Sci-Mater 22:2045–2051

    Article  CAS  Google Scholar 

  11. Braissant O, Wirz D, Goepfert B, Daniels AU (2010) Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 303:1–8

    Article  CAS  Google Scholar 

  12. James A (1987) Calorimetry past, present and future. Thermal and energetic studies of cellular biological systems. Wright, Bristol

    Google Scholar 

  13. Wadso I (2002) Isothermal microcalorimetry in applied biology. Thermochim Acta 394:305–311

    Article  CAS  Google Scholar 

  14. Wadso I, Goldberg RN (2001) Standards in isothermal microcalorimetry (IUPAC technical report). Pure Appl Chem 73:1625–1639

    Article  CAS  Google Scholar 

  15. Maiolo EM, Tafin UF, Borens O, Trampuz A (2014) Activities of fluconazole, caspofungin, anidulafungin, and amphotericin b on planktonic and biofilm candida species determined by microcalorimetry. Antimicrob Agents 58:2709–2717

    Article  Google Scholar 

  16. Mihailescu R, Tafin UF, Corvec S, Oliva A, Betrisey B, Borens O, Trampuz A (2014) High activity of fosfomycin and rifampin against methicillinresistant staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother 58:2547–2553

    Article  Google Scholar 

  17. Buchholz F, Wolf A, Lerchner J, Mertens F, Harms H, Maskow T (2010) Chip calorimetry for fast and reliable evaluation of bactericidal and bacteriostatic treatments of biofilms. Antimicrob Agents Chemother 54:312–319

    Article  CAS  Google Scholar 

  18. Mariana F, Buchholz F, Lerchner J, Neu TR, Harms H, Maskow T (2013) Chip-calorimetric monitoring of biofilm eradication with antibiotics provides mechanistic information. Int J Med Microbiol 303:158–165

    Article  CAS  Google Scholar 

  19. Said J, Walker M, Parsons D, Stapleton P, Beezer AE, Gaisford S (2015) Development of a flow system for studying biofilm formation on medical devices with microcalorimetry. Methods 76:35–40

    Article  CAS  Google Scholar 

  20. Merritt JH, Kadouri DE, O'Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol 1B:18

    Google Scholar 

  21. Mikkelsen H, Duck Z, Lilley KS, Welch M (2007) Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol 189:2411–2416

    Article  CAS  Google Scholar 

  22. Kientz B, Luke S, Vukusic P, Peteri R, Beaudry C, Renault T, Simon D, Mignot T, Rosenfeld E (2016) A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms. Sci Rep 6:19906

    Article  CAS  Google Scholar 

  23. Kulka K, Hatfull G, Ojha AK (2012) Growth of Mycobacterium tuberculosis biofilms. J Vis Exp 60:3820

    Google Scholar 

  24. Ojha AK, Hatfull GF (2012) Biofilms of Mycobacterium tuberculosis: new perspectives of an old pathogen. Understanding tuberculosis - deciphering the secret life of the bacilli. Intech, London

    Google Scholar 

  25. Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174

    Article  CAS  Google Scholar 

  26. Atlas RM (2010) Handbook of microbiological media. CRC press, Boca Raton (FL)

    Book  Google Scholar 

  27. Braissant O, Bonkat G, Wirz D, Bachmann A (2013) Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta 555:64–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The calorimetry work at the Center of Biomechanics and Biocalorimetry in the University of Basel is possible due to the generous financial support of the Merian Iselin Stiftung and support of the colleagues from the Merian Iselin Spital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Braissant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Solokhina, A., Bonkat, G., Braissant, O. (2019). Measuring the Metabolic Activity of Mature Mycobacterial Biofilms Using Isothermal Microcalorimetry. In: Ennifar, E. (eds) Microcalorimetry of Biological Molecules. Methods in Molecular Biology, vol 1964. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9179-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9179-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9178-5

  • Online ISBN: 978-1-4939-9179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics