Skip to main content

Diagnosis of Meningococcal Infection Using Internally Controlled Multiplex Real-Time PCR

  • Protocol
  • First Online:
Neisseria meningitidis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1969))

Abstract

Neisseria meningitidis (Nm) is a leading cause of invasive infections associated with high mortality and morbidity, notably meningitis and septicemia. Etiological rapid diagnosis is key for the preventive management of invasive meningococcal disease (IMD). However, conventional methods for diagnosis are time-consuming and could be hampered by the difficulties in culturing the isolates from clinical specimens especially due to early antibiotic treatment. Therefore, sensitive, specific and rapid non-culture-based methods are valuable for early diagnosis, effective therapy, and prevention. Here we describe a real-time PCR multiplex assays for the detection of Nm targeting the meningococcal-specific gene crgA, coding for a LysR-like transcriptional regulator, and six serogroup-specific (A, B, C, W, X, Y) Nm capsular genes, using a Qiagen column-based method for the optimum isolation of DNA from clinical specimens. Internal quality controls were included to monitor extraction of DNA, inhibition and the technical validation of the PCR as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whittaker R, Dias JG, Ramliden M, Kodmon C, Economopoulou A, Beer N, Pastore Celentano L (2017) The epidemiology of invasive meningococcal disease in EU/EEA countries, 2004–2014. Vaccine 35(16):2034–2041

    Article  Google Scholar 

  2. Caugant DA, Maiden MC (2009) Meningococcal carriage and disease—population biology and evolution. Vaccine 27(Suppl 2):B64–B70

    Article  Google Scholar 

  3. Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369(9580):2196–2210

    Google Scholar 

  4. WHO (13 Aug 2015) Meningococcal Meningitis. Fact sheet no. 141

    Google Scholar 

  5. Edmond K, Clark A, Korczak VS, Sanderson C, Griffiths UK, Rudan I (2010) Global and regional risk of disabling sequelae from bacterial meningitis: a systematic review and meta-analysis. Lancet Infect Dis 10(5):317–328

    Article  Google Scholar 

  6. Thompson MJ, Ninis N, Perera R, Mayon-White R, Phillips C, Bailey L, Harnden A, Mant D, Levin M (2006) Clinical recognition of meningococcal disease in children and adolescents. Lancet 367(9508):397–403

    Article  Google Scholar 

  7. Nadel S (2016) Treatment of meningococcal disease. J Adolesc Health 59(2 Suppl):S21–S28

    Article  Google Scholar 

  8. CDC (2015) Meningococcal disease (Neisseria meningitidis). 2015 case definition. CDC website. http://www.cdcgov/nndss/conditions/meningococcal-disease/case-definition/2015. Accessed 19 June 2018

  9. Ragunathan L, Ramsay M, Borrow R, Guiver M, Gray S, Kaczmarski EB (2000) Clinical features, laboratory findings and management of meningococcal meningitis in England and Wales: report of a 1997 survey. Meningococcal meningitis: 1997 survey report. J Inf Secur 40(1):74–79

    CAS  Google Scholar 

  10. Cartwright K, Reilly S, White D, Stuart J (1992) Early treatment with parenteral penicillin in meningococcal disease. BMJ 305(6846):143–147

    Article  CAS  Google Scholar 

  11. Sobanski MA, Barnes RA, Coakley WT (2001) Detection of meningococcal antigen by latex agglutination. Methods Mol Med 67:41–59

    CAS  PubMed  Google Scholar 

  12. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    Article  CAS  Google Scholar 

  13. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88(16):7276–7280

    Google Scholar 

  14. Bryant PA, Li HY, Zaia A, Griffith J, Hogg G, Curtis N, Carapetis JR (2004) Prospective study of a real-time PCR that is highly sensitive, specific, and clinically useful for diagnosis of meningococcal disease in children. J Clin Microbiol 42(7):2919–2925

    Article  CAS  Google Scholar 

  15. Carrol ED, Thomson AP, Shears P, Gray SJ, Kaczmarski EB, Hart CA (2000) Performance characteristics of the polymerase chain reaction assay to confirm clinical meningococcal disease. Arch Dis Child 83(3):271–273

    Article  CAS  Google Scholar 

  16. Taha MK (2000) Simultaneous approach for nonculture PCR-based identification and serogroup prediction of Neisseria meningitidis. J Clin Microbiol 38(2):855–857

    Google Scholar 

  17. Niesters HG (2001) Quantitation of viral load using real-time amplification techniques. Methods 25(4):419–429

    Article  CAS  Google Scholar 

  18. Longo MC, Berninger MS, Hartley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93(1):125–128

    Article  CAS  Google Scholar 

  19. Roth SJ, Tischer BK, Kovacs KM, Lydersen C, Osterrieder N, Tryland M (2013) Phocine herpesvirus 1 (PhHV-1) in harbor seals from Svalbard, Norway. Vet Microbiol 164(3–4):286–292

    Article  Google Scholar 

  20. Guiver M, Borrow R, Marsh J, Gray SJ, Kaczmarski EB, Howells D, Boseley P, Fox AJ (2000) Evaluation of the Applied Biosystems automated Taqman polymerase chain reaction system for the detection of meningococcal DNA. FEMS Immunol Med Microbiol 28(2):173–179

    Article  CAS  Google Scholar 

  21. Tzeng YL, Noble C, Stephens DS (2003) Genetic basis for biosynthesis of the (alpha 1→4)-linked N-acetyl-D-glucosamine 1-phosphate capsule of Neisseria meningitidis serogroup X. Infect Immun 71(12):6712–6720

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institut Pasteur, Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala-Eddine Deghmane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deghmane, AE., Hong, E., Taha, MK. (2019). Diagnosis of Meningococcal Infection Using Internally Controlled Multiplex Real-Time PCR. In: Seib, K., Peak, I. (eds) Neisseria meningitidis. Methods in Molecular Biology, vol 1969. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9202-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9202-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9201-0

  • Online ISBN: 978-1-4939-9202-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics