Skip to main content

Identification and Discrimination of Chlamydia trachomatis Ocular and Urogenital Strains and Major Phylogenetic Lineages by CtGEM Typing, A Double-Locus Genotyping Method

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2042))

Abstract

CtGEM typing was developed to subdivide the bacterial species Chlamydia trachomatis on the basis of genome phylogeny and anatomical tropism. The rationale was facilitation of surveillance for ocular strains, although the method is applicable to essentially any C. trachomatis surveillance application that does not require high resolution. CtGEM is a double-locus genotyping method. The loci included in the assay were identified by computerized analysis of 65 complete genomes for resolution optimized sets of single nucleotide polymorphisms (SNPs). From this, two PCR amplifiable fragments were defined. One, rg1, is within a hypothetical gene annotated as Jali-1891 within the C. trachomatis B_Jali20 genome. The other, ofr, is within the ompA gene which encodes the major outer membrane protein. Variation in rg1 is conferred by two SNPs defining four haplotypes that exhibit concordance with genome phylogeny. Variation within ofr is more complex and allows for inference of ompA genotype, either to the level of single genotype, or group of closely related genotypes. Two CtGEM formats were developed. One is based on interrogation of the two loci by high resolution melting analysis (HRMA), and the other based on analysis of the loci by Sanger sequencing. The genotypes defined identify known ocular genotypes, discriminate known ocular genotypes from each other, discriminate the major phylogenetic lineages of the species, and discriminate all ompA genotypes with the exception of closely related variants within the genotypes H, I, J cluster. The Sanger sequencing format provides slightly more resolution that the HRMA format with respect to ompA genotype. An unusual aspect of this method is that all possible combinations of rg1 haplotype, and inferred ompA genotype(s) have been given CtGEM typing numbers. This includes types that at this time have not been shown to exist.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mariotti SP, Pascolini D, Rose-Nussbaumer J (2009) Trachoma: global magnitude of a preventable cause of blindness. Br J Ophthalmol 93(5):563–568. https://doi.org/10.1136/bjo.2008.148494

    Article  CAS  PubMed  Google Scholar 

  2. WHO (2011) Prevalence and incidence of selected sexually transmitted infections (trans: research DoRHa). World Health Organization, Geneva, Switzerland

    Google Scholar 

  3. Chan PA, Robinette A, Montgomery M, Almonte A, Cu-Uvin S, Lonks JR, Chapin KC, Kojic EM, Hardy EJ (2016) Extragenital infections caused by Chlamydia trachomatis and Neisseria gonorrhoeae: a review of the literature. Infect Dis Obstet Gynecol 2016:5758387. https://doi.org/10.1155/2016/5758387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gupta NK, Bowman CA (2012) Managing sexually transmitted infections in pregnant women. Womens Health 8(3):313–321. https://doi.org/10.2217/whe.12.16

    Article  Google Scholar 

  5. Garland SM, Malatt A, Tabrizi S, Grando D, Lees MI, Andrew JH, Taylor HR (1995) Chlamydia trachomatis conjunctivitis. Prevalence and association with genital tract infection. Med J Aust 162(7):363–366

    CAS  PubMed  Google Scholar 

  6. Derrick T, Roberts C, Last AR, Burr SE, Holland MJ (2015) Trachoma and ocular chlamydial infection in the era of genomics. Mediat Inflamm 2015:791847. https://doi.org/10.1155/2015/791847

    Article  CAS  Google Scholar 

  7. Taylor HR (ed) (2008) Trachoma: a blinding scourge from the bronze age to the twenty-first century. Centre for Eye Research Australia, Victoria, Australia

    Google Scholar 

  8. Diab MM, Allen RC, Gawdat TI, Saif AS (2018) Trachoma elimination, approaching 2020. Curr Opin Ophthalmol 29(5):451–457. https://doi.org/10.1097/ICU.0000000000000504

    Article  PubMed  Google Scholar 

  9. Taylor HR, Anjou MD (2013) Trachoma in Australia: an update. Clin Exp Ophthalmol 41(5):508–512. https://doi.org/10.1111/ceo.12023

    Article  PubMed  Google Scholar 

  10. Hadfield J, Harris SR, Seth-Smith HMB, Parmar S, Andersson P, Giffard PM, Schachter J, Moncada J, Ellison L, Vaulet MLG, Fermepin MR, Radebe F, Mendoza S, Ouburg S, Morre SA, Sachse K, Puolakkainen M, Korhonen SJ, Sonnex C, Wiggins R, Jalal H, Brunelli T, Casprini P, Pitt R, Ison C, Savicheva A, Shipitsyna E, Hadad R, Kari L, Burton MJ, Mabey D, Solomon AW, Lewis D, Marsh P, Unemo M, Clarke IN, Parkhill J, Thomson NR (2017) Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion. Genome Res 27(7):1220–1229. https://doi.org/10.1101/gr.212647.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andersson P, Harris SR, Smith HM, Hadfield J, O’Neill C, Cutcliffe LT, Douglas FP, Asche LV, Mathews JD, Hutton SI, Sarovich DS, Tong SY, Clarke IN, Thomson NR, Giffard PM (2016) Chlamydia trachomatis from Australian aboriginal people with trachoma are polyphyletic composed of multiple distinctive lineages. Nat Commun 7:10688. https://doi.org/10.1038/ncomms10688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harris SR, Clarke IN, Seth-Smith HM, Solomon AW, Cutcliffe LT, Marsh P, Skilton RJ, Holland MJ, Mabey D, Peeling RW, Lewis DA, Spratt BG, Unemo M, Persson K, Bjartling C, Brunham R, de Vries HJ, Morre SA, Speksnijder A, Bebear CM, Clerc M, de Barbeyrac B, Parkhill J, Thomson NR (2012) Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 44 (4):413–419, https://doi.org/10.1038/ng.2214

    Article  CAS  Google Scholar 

  13. Jeffrey BM, Suchland RJ, Quinn KL, Davidson JR, Stamm WE, Rockey DD (2010) Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination. Infect Immun 78(6):2544–2553. https://doi.org/10.1128/IAI.01324-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giffard PM, Andersson P, Wilson J, Buckley C, Lilliebridge R, Harris TM, Kleinecke M, O’Grady KF, Huston WM, Lambert SB, Whiley DM, Holt DC (2018) CtGEM typing: discrimination of Chlamydia trachomatis ocular and urogenital strains and major evolutionary lineages by high resolution melting analysis of two amplified DNA fragments. PLoS One 13(4):e0195454. https://doi.org/10.1371/journal.pone.0195454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dal Conte I, Mistrangelo M, Cariti C, Chiriotto M, Lucchini A, Vigna M, Morino M, Di Perri G (2014) Lymphogranuloma venereum: an old, forgotten re-emerging systemic disease. Panminerva Med 56(1):73–83

    CAS  PubMed  Google Scholar 

  16. Caldwell HD, Schachter J (1982) Antigenic analysis of the major outer membrane protein of Chlamydia spp. Infect Immun 35(3):1024–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brunham RC, Plummer FA, Stephens RS (1993) Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect Immun 61(6):2273–2276

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Giffard PM, Singh G, Garland SM (2017) What does Chlamydia trachomatis detection in a urogenital specimen from a young child mean? Sex Transm Infect 93(4):236–237. https://doi.org/10.1136/sextrans-2015-052473

    Article  PubMed  Google Scholar 

  19. Andersson P, Tong SY, Lilliebridge RA, Brenner NC, Martin LM, Spencer E, Delima J, Singh G, McCann F, Hudson C, Johns T, Giffard PM (2014) Multisite direct determination of the potential for environmental contamination of urine samples used for diagnosis of sexually transmitted infections. J Pediatr Infect Dis Soc 3(3):189–196. https://doi.org/10.1093/jpids/pit085

    Article  Google Scholar 

  20. Giffard PM, Lilliebridge RA, Wilson J, Murray G, Phillips S, Tabrizi SN, Garland SM, Martin L, Singh G, Tong SYC, Holt DC, Andersson P (2017) Contaminated fingers: a potential cause of Chlamydia trachomatis-positive urine specimens. Sex Transm Infect. https://doi.org/10.1136/sextrans-2016-053081

    Article  Google Scholar 

  21. Asche VL, Hutton SI (1990) Proceedings of the seventh international symposium on human chlamydial infections. In: Bowie WR, Caldwell HD, Jones RP et al (eds) International symposium on human chlamydial infections. Press Syndicate of the University of Cambridge, Harrison Hot Springs

    Google Scholar 

  22. Douglas FP, Bidawid-Woodroffe S, McDonnell J, Hyne SG, Mathews JD (1986) Proceedings of the sixth international symposium on human chlamydial infections. In: Oriel D, Ridgway GL, Schachter J, Taylor-Robinson D, Ward J (eds) International symposium on human chlamydial infections. Press Syndicate of the University of Cambridge, Surrey

    Google Scholar 

  23. Giffard PM, Singh G, Garland SM (2016) What does Chlamydia trachomatis detection in a urogenital specimen from a young child mean? Sex Transm Infect. https://doi.org/10.1136/sextrans-2015-052473

    Article  Google Scholar 

  24. Giffard PM, Brenner NC, Tabrizi SN, Garland SM, Holt DC, Andersson P, Lilliebridge RA, Tong SY, Karimi M, Boylan P, Ryder N, Johns T, Singh G (2016) Chlamydia trachomatis genotypes in a cross-sectional study of urogenital samples from remote northern and Central Australia. BMJ Open 6(1):e009624. https://doi.org/10.1136/bmjopen-2015-009624

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pedersen LN, Herrmann B, Moller JK (2009) Typing Chlamydia trachomatis: from egg yolk to nanotechnology. FEMS Immunol Med Microbiol 55(2):120–130

    Article  CAS  Google Scholar 

  26. Lysen M, Osterlund A, Rubin CJ, Persson T, Persson I, Herrmann B (2004) Characterization of ompA genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish County. J Clin Microbiol 42(4):1641–1647

    Article  CAS  Google Scholar 

  27. Stevens MP, Twin J, Fairley CK, Donovan B, Tan SE, Yu J, Garland SM, Tabrizi SN (2010) Development and evaluation of an ompA quantitative real-time PCR assay for Chlamydia trachomatis serovar determination. J Clin Microbiol 48(6):2060–2065. https://doi.org/10.1128/JCM.02308-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herrmann B, Isaksson J, Ryberg M, Tangrot J, Saleh I, Versteeg B, Gravningen K, Bruisten S (2015) Global multilocus sequence type analysis of Chlamydia trachomatis strains from 16 countries. J Clin Microbiol 53(7):2172–2179. https://doi.org/10.1128/JCM.00249-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dean D, Bruno WJ, Wan R, Gomes JP, Devignot S, Mehari T, de Vries HJ, Morre SA, Myers G, Read TD, Spratt BG (2009) Predicting phenotype and emerging strains among Chlamydia trachomatis infections. Emerg Infect Dis 15(9):1385–1394

    Article  CAS  Google Scholar 

  30. Schaeffer A, Henrich B (2008) Rapid detection of Chlamydia trachomatis and typing of the Lymphogranuloma venereum associated L-Serovars by TaqMan PCR. BMC Infect Dis 8:56. https://doi.org/10.1186/1471-2334-8-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tong SY, Giffard PM (2012) Microbiological applications of high-resolution melting analysis. J Clin Microbiol 50(11):3418–3421. https://doi.org/10.1128/JCM.01709-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lilliebridge RA, Tong SY, Giffard PM, Holt DC (2011) The utility of high-resolution melting analysis of SNP nucleated PCR amplicons--an MLST based Staphylococcus aureus typing scheme. PLoS One 6(6):e19749. https://doi.org/10.1371/journal.pone.0019749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Erali M, Voelkerding KV, Wittwer CT (2008) High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol 85(1):50–58. https://doi.org/10.1016/j.yexmp.2008.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robertson GA, Thiruvenkataswamy V, Shilling H, Price EP, Huygens F, Henskens FA, Giffard PM (2004) Identification and interrogation of highly informative single nucleotide polymorphism sets defined by bacterial multilocus sequence typing databases. J Med Microbiol 53(Pt 1):35–45. https://doi.org/10.1099/jmm.0.05365-0

    Article  CAS  PubMed  Google Scholar 

  35. Price EP, Inman-Bamber J, Thiruvenkataswamy V, Huygens F, Giffard PM (2007) Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants. BMC Bioinformatics 8:278. https://doi.org/10.1186/1471-2105-8-278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26(11):2465–2466

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bell JM, Turnidge JD, Andersson P (2010) Aac(6′)-Ib-cr genotyping by simultaneous high-resolution melting analyses of an unlabeled probe and full-length amplicon. Antimicrob Agents Chemother 54(3):1378–1380. https://doi.org/10.1128/AAC.01476-09

    Article  CAS  PubMed  Google Scholar 

  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  39. Dwight Z, Palais R, Wittwer CT (2011) uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application. Bioinformatics 27(7):1019–1020. https://doi.org/10.1093/bioinformatics/btr065

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Giffard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holt, D.C., Andersson, P., Buckley, C., Whiley, D.M., Giffard, P.M. (2019). Identification and Discrimination of Chlamydia trachomatis Ocular and Urogenital Strains and Major Phylogenetic Lineages by CtGEM Typing, A Double-Locus Genotyping Method. In: Brown, A. (eds) Chlamydia trachomatis. Methods in Molecular Biology, vol 2042. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9694-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9694-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9693-3

  • Online ISBN: 978-1-4939-9694-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics