Skip to main content

Formulation of Drosophila Food for Various Feeding Studies

  • Protocol
  • First Online:
Fundamental Approaches to Screen Abnormalities in Drosophila

Abstract

Drosophila melanogaster serves as an important model organism in the fields of genetics and developmental biology. Recent studies have indicated the use of Drosophila in a number of other studies such as metabolic, nanotoxicological and immunological studies. Rearing of fly in the laboratory condition is an important task to work with this organism. Different culture media are developed to maintain the growth and development of the flies where the components of the food play important roles. Drosophila used in various toxicological or metabolic studies often involve oral intake of various nanoparticles, pathogens, antibiotics and molecules to study metabolism, and this is done by mixing the compounds with fly food in proper concentration. This chapter describes the modification of fly food with various treatments such as the addition of nanoparticles, bacteria, antibiotics and AGE compounds. These protocols will help to use fly for various feeding experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markow TA, O’Grady P (2005) Drosophila: a guide to species identification and use. Elsevier, London

    Google Scholar 

  2. Ranganath H, Tanuja M (2000) Teaching and learning genetics with Drosophila 4. Pattern of inheritance of characters when there is interaction of genes or linkage of genes. RESONANCE

    Google Scholar 

  3. Pearl R (1926) A synthetic food medium for the cultivation of Drosophila: preliminary note. J Gen Physiol 9(4):513–519

    Article  CAS  Google Scholar 

  4. Chattopadhyay D, James J, Roy D, Sen S, Chatterjee R, Thirumurugan K (2015) Effect of semolina-jaggery diet on survival and development of Drosophila melanogaster. Fly 9(1):16–21

    Article  Google Scholar 

  5. Guerra MJ, Mujica MV (2010) Physical and chemical properties of granulated cane sugar “panelas”. Food Sci Technol 30(1):250–257

    Article  Google Scholar 

  6. Avanesian A, Khodayari B, Felgner JS, Jafari M (2010) Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster. Biogerontology 11(1):45

    Article  CAS  Google Scholar 

  7. Stocker H, Gallant P (2007) Getting started: an overview on raising and using Drosophila. Humana Press, Springer

    Google Scholar 

  8. Konsolaki M (2013) Fruitful research: drug target discovery for neurodegenerative diseases in Drosophila. Expert Opin Drug Discovery 8(12):1503–1513

    Article  CAS  Google Scholar 

  9. Bell AJ, McBride SM, Dockendorff TC (2009) Flies as the ointment: Drosophila modeling to enhance drug discovery. Fly 3(1):39–49

    Article  CAS  Google Scholar 

  10. Fernández-Hernández I, Scheenaard E, Pollarolo G, Gonzalez C (2016) The translational relevance of Drosophila in drug discovery. EMBO Rep 17(4):471–472

    Article  Google Scholar 

  11. Douglas S, Davis S, Illum L (1987) Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst 3(3):233–261

    CAS  PubMed  Google Scholar 

  12. Sanguansri P, Augustin MA (2006) Nanoscale materials development–a food industry perspective. Trends Food Sci Technol 17(10):547–556

    Article  CAS  Google Scholar 

  13. Krivorotova T, Cirkovas A, Maciulyte S, Staneviciene R, Budriene S, Serviene E, Sereikaite J (2016) Nisin-loaded pectin nanoparticles for food preservation. Food Hydrocoll 54:49–56

    Article  CAS  Google Scholar 

  14. Priyadarsini S, Mukherjee S, Mishra M (2018) Nanoparticles used in dentistry: a review. J Oral Biol Craniofac Res 8(1):58–67

    Article  Google Scholar 

  15. Sabat D, Patnaik A, Ekka B, Dash P, Mishra M (2016) Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol Behav 167:76–85

    Article  CAS  Google Scholar 

  16. Mishra M, Sabat D, Ekka B, Sahu S, Unnikannan P, Dash P (2017) Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanopart Res 19(8):282

    Article  Google Scholar 

  17. Pappus SA, Ekka B, Sahu S, Sabat D, Dash P, Mishra M (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanopart Res 19(4):136

    Article  Google Scholar 

  18. Pappus SA, Mishra M (2018) A Drosophila model to decipher the toxicity of nanoparticles taken through oral routes. In: Cellular and molecular toxicology of nanoparticles. Springer, p 311–322

    Google Scholar 

  19. Rand MD, Montgomery SL, Prince L, Vorojeikina D (2014) Developmental toxicity assays using the Drosophila model. Curr Protoc Toxicol 59(1):1.12. 11–11.12. 20

    Article  Google Scholar 

  20. Hirsch HV, Mercer J, Sambaziotis H, Huber M, Stark DT, Torno-Morley T, Hollocher K, Ghiradella H, Ruden DM (2003) Behavioral effects of chronic exposure to low levels of lead in Drosophila melanogaster. Neurotoxicology 24(3):435–442

    Article  CAS  Google Scholar 

  21. Muñiz Ortiz JG, Opoka R, Kane D, Cartwright IL (2008) Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase. Toxicol Sci 107(2):416–426

    Article  Google Scholar 

  22. Jyoti S, Naz F, Siddique YH (2014) Toxic effects of gentamicin in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Toxicol Res 3(3):168–176

    Article  Google Scholar 

  23. O’Shea KL, Singh ND (2015) Tetracycline-exposed Drosophila melanogaster males produce fewer offspring but a relative excess of sons. Ecol Evol 5(15):3130–3139

    Article  Google Scholar 

  24. Hoffmann JA (2003) The immune response of Drosophila. Nature 426(6962):33

    Article  CAS  Google Scholar 

  25. Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol 14(12):796

    Article  CAS  Google Scholar 

  26. Bergman P, Esfahani SS, Engström Y (2017) Drosophila as a model for human diseases—focus on innate immunity in barrier epithelia. In: Current topics in developmental biology, vol 121. Elsevier, pp 29–81

    Google Scholar 

  27. Siva-Jothy JA, Prakash A, Vasanthakrishnan RB, Monteith KM, Vale PF (2018) Oral bacterial infection and shedding in Drosophila melanogaster. J Visualized Exp 135

    Google Scholar 

  28. Apidianakis Y, Rahme LG (2009) Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4(9):1285

    Article  CAS  Google Scholar 

  29. Khalil S, Jacobson E, Chambers MC, Lazzaro BP (2015) Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster. J Visualized Exp 99:e52613

    Google Scholar 

  30. Neyen C, Bretscher AJ, Binggeli O, Lemaitre B (2014) Methods to study Drosophila immunity. Methods 68(1):116–128

    Article  CAS  Google Scholar 

  31. Nehme NT, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3(11):e173

    Article  Google Scholar 

  32. Sleiman MSB, Osman D, Massouras A, Hoffmann AA, Lemaitre B, Deplancke B (2015) Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence. Nat Commun 6:7829

    Article  Google Scholar 

  33. Kuraishi T, Hori A, Kurata S (2013) Host-microbe interactions in the gut of Drosophila melanogaster. Front Physiol 4:375

    Article  Google Scholar 

  34. Gupta V, Vasanthakrishnan RB, Siva-Jothy J, Monteith KM, Brown SP, Vale PF (2017) The route of infection determines Wolbachia antibacterial protection in Drosophila. Proc R Soc B 284(1856):20170809

    Article  Google Scholar 

  35. Martins NE, Faria VG, Teixeira L, Magalhães S, Sucena É (2013) Host adaptation is contingent upon the infection route taken by pathogens. PLoS Pathog 9(9):e1003601

    Article  CAS  Google Scholar 

  36. Ferreira ÁG, Naylor H, Esteves SS, Pais IS, Martins NE, Teixeira L (2014) The Toll-dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog 10(12):e1004507

    Article  Google Scholar 

  37. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5(2):200–211

    Article  CAS  Google Scholar 

  38. Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Prog Horm Res 56(1):1–22

    Article  CAS  Google Scholar 

  39. Takeuchi M, Yamagishi S-i (2009) Involvement of toxic AGEs (TAGE) in the pathogenesis of diabetic vascular complications and Alzheimer’s disease. J Alzheimers Dis 16(4):845–858

    Article  Google Scholar 

  40. Nedić O, Rattan S, Grune T, Trougakos I (2013) Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic Res 47(sup1):28–38

    Article  Google Scholar 

  41. Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H (2005) Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci 1043(1):461–466

    Article  CAS  Google Scholar 

  42. Assar SH, Moloney C, Lima M, Magee R, Ames JM (2009) Determination of N ɛ-(carboxymethyl) lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids 36(2):317–326

    Article  CAS  Google Scholar 

  43. Šebeková K, Hofmann T, Boor P, Šebeková K Jr, Og U, Erbersdobler HF, Baynes JW, Thorpe SR, Heidland A, Somoza V (2005) Renal effects of oral Maillard reaction product load in the form of bread crusts in healthy and subtotally nephrectomized rats. Ann N Y Acad Sci 1043(1):482–491

    Article  Google Scholar 

  44. Tsakiri EN, Iliaki KK, Höhn A, Grimm S, Papassideri IS, Grune T, Trougakos IP (2013) Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med 65:1155–1163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SP and SM are thankful to MHRD for financial support. MM lab is supported by Grant No. BT/PR21857/NNT/28/1238/2017, EMR/2017/003054, Odisha DBT 3325/ST(BIO)-02/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Priyadarsini, S., Mukherjee, S., Mishra, M. (2020). Formulation of Drosophila Food for Various Feeding Studies. In: Mishra, M. (eds) Fundamental Approaches to Screen Abnormalities in Drosophila. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9756-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9756-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9755-8

  • Online ISBN: 978-1-4939-9756-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics