Skip to main content

Part of the book series: Fields Institute Communications ((FIC,volume 83))

Abstract

We consider the massive Thirring model in the laboratory coordinates and explain how the inverse scattering transform can be developed with the Riemann–Hilbert approach. The key ingredient of our technique is to transform the corresponding spectral problem to two equivalent forms: one is suitable for the spectral parameter at the origin and the other one is suitable for the spectral parameter at infinity. Global solutions to the massive Thirring model are recovered from the reconstruction formulae at the origin and at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I.V. Barashenkov and B.S. Getmanov, “Multisoliton solutions in the scheme for unified description of integrable relativistic massive fields. Non-degenerate sl(2, C) case”, Commun. Math. Phys. 112 (1987) 423–446.

    Article  Google Scholar 

  2. I.V. Barashenkov and B.S. Getmanov, “The unified approach to integrable relativistic equations: Soliton solutions over nonvanishing backgrounds. II”, J. Math. Phys. 34 (1993), 3054–3072.

    Article  MathSciNet  Google Scholar 

  3. R. Beals and R. R. Coifman, “Scattering and inverse scattering for first order systems”, Comm. Pure Appl. Math. 37 (1984), 39–90.

    Article  MathSciNet  Google Scholar 

  4. R. Beals, P. Deift, and C. Tomei, Direct and Inverse Scattering on the Line. American Mathematical Soc., 1988.

    Google Scholar 

  5. T. Candy, “Global existence for an L 2-critical nonlinear Dirac equation in one dimension”, Adv. Diff. Eqs. 7–8 (2011), 643–666.

    MathSciNet  MATH  Google Scholar 

  6. T. Candy and H. Lindblad, “Long range scattering for the cubic Dirac equation on \(\mathbb {R}^{1+1}\)”, Diff. Integral Equat. 31 (2018), 507–518.

    MathSciNet  MATH  Google Scholar 

  7. P.-J. Cheng, S. Venakides, and X. Zhou, “Long-time asymptotics for the pure radiation solution of the sine-Gordon equation”, Comm. PDEs 24, Nos. 7-8 (1999), 1195–1262.

    Article  MathSciNet  Google Scholar 

  8. A. Contreras and D.E. Pelinovsky, “Stability of multi-solitons in the cubic NLS equation”, J. Hyperbolic Differ. Equ. 11 (2014), 329–353.

    Article  MathSciNet  Google Scholar 

  9. A. Contreras, D.E. Pelinovsky, and Y. Shimabukuro, “L 2 orbital stability of Dirac solitons in the massive Thirring model”, Comm. in PDEs 41 (2016), 227–255.

    Article  MathSciNet  Google Scholar 

  10. S. Cuccagna and D.E. Pelinovsky, “The asymptotic stability of solitons in the cubic NLS equation on the line”, Applicable Analysis, 93 (2014), 791–822.

    Article  MathSciNet  Google Scholar 

  11. P.A. Deift and X. Zhou, “Long-time asymptotics for solutions of the NLS equation with initial data in weighted Sobolev spaces”, Comm. Pure Appl. Math. 56 (2003), 1029–1077.

    Article  MathSciNet  Google Scholar 

  12. D.J. Gross and A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories”, Phys. Rev. D 10 (1974), 3235–3253.

    Article  Google Scholar 

  13. H. Huh, “Global strong solutions to the Thirring model in critical space”, J. Math. Anal. Appl. 381 (2011), 513–520.

    Article  MathSciNet  Google Scholar 

  14. H. Huh, “Global solutions to Gross–Neveu equation”, Lett. Math. Phys. 103 (2013), 927–931.

    Article  MathSciNet  Google Scholar 

  15. H. Huh and B. Moon, “Low regularity well-posedness for Gross–Neveu equations”, Comm. Pure Appl. Anal. 14 (2015), 1903–1913.

    Article  MathSciNet  Google Scholar 

  16. R. Jenkins, J. Liu, P.A. Perry, and C. Sulem, “Global well-posedness for the derivative nonlinear Schrödinger equation”, Comm. in PDEs 43 (2018), 1151–1195.

    Article  Google Scholar 

  17. R. Jenkins, J. Liu, P.A. Perry, and C. Sulem, “Soliton resolution for the derivative nonlinear Schrödinger equation”, Comm. Math. Phys. 363 (2018), 1003–1049.

    Article  MathSciNet  Google Scholar 

  18. D.J. Kaup and A.C. Newell, “On the Coleman correspondence and the solution of the Massive Thirring model”, Lett. Nuovo Cimento 20 (1977), 325–331.

    Article  MathSciNet  Google Scholar 

  19. D. Kaup and A. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys. 19 (1978), 789–801.

    Article  Google Scholar 

  20. M. Klaus, D.E. Pelinovsky, and V.M. Rothos, “Evans function for Lax operators with algebraically decaying potentials”, J. Nonlin. Sci. 16 (2006), 1–44.

    Article  MathSciNet  Google Scholar 

  21. E.A. Kuznetsov and A.V. Mikhailov, “On the complete integrability of the two-dimensional classical Thirring model”, Theor. Math. Phys. 30 (1977), 193–200.

    Article  MathSciNet  Google Scholar 

  22. J. Liu, P.A. Perry, and C. Sulem, “Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering”, Comm. in PDEs 41 (2016), 1692–1760.

    Article  Google Scholar 

  23. J. Liu, P.A. Perry, and C. Sulem, “Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data”, Ann. Inst. H. Poincaré C - Analyse non-linéaire 35 (2018), 217–265.

    Article  Google Scholar 

  24. A.V. Mikhailov, “Integrability of the two-dimensional Thirring model”, JETP Lett. 23 (1976), 320–323.

    Google Scholar 

  25. S. J. Orfanidis, “Soliton solutions of the massive Thirring model and the inverse scattering transform”, Phys. Rev. D 14 (1976), 472–478.

    Article  Google Scholar 

  26. D.E. Pelinovsky, “Survey on global existence in the nonlinear Dirac equations in one dimension”, in Harmonic Analysis and Nonlinear Partial Differential Equations (Editors: T. Ozawa and M. Sugimoto) RIMS Kokyuroku Bessatsu B26 (2011), 37–50.

    Google Scholar 

  27. D. E. Pelinovsky, A. Saalmann, and Y. Shimabukuro, “The derivative NLS equation: global existence with solitons”, Dynamics of PDE 14 (2017), 271–294.

    MathSciNet  MATH  Google Scholar 

  28. D. E. Pelinovsky and Y. Shimabukuro, “Orbital stability of Dirac solitons”, Lett. Math. Phys. 104 (2014), 21–41.

    Article  MathSciNet  Google Scholar 

  29. D. E. Pelinovsky and Y. Shimabukuro, “Existence of global solutions to the derivative NLS equation with the inverse scattering transform method”, Inter Math Res Notices 2018 (2018), 5663–5728.

    Article  MathSciNet  Google Scholar 

  30. A. Saalmann, “Asymptotic stability of N-solitons in the cubic NLS equation”, J. Hyperbolic Differ. Equ. 14 (2017), 455–485.

    Article  MathSciNet  Google Scholar 

  31. S. Selberg and A. Tesfahun, “Low regularity well-posedness for some nonlinear Dirac equations in one space dimension”, Diff. Integral Eqs. 23 (2010), 265–278.

    MathSciNet  MATH  Google Scholar 

  32. M. Soler, “Classical, stable, nonlinear spinor field with positive rest energy”, Phys. Rev. D. 1 (1970), 2766–2769.

    Article  Google Scholar 

  33. W. Thirring, “A soluble relativistic field theory”, Annals of Physics 3 (1958), 91–112.

    Article  MathSciNet  Google Scholar 

  34. J. Villarroel, “The DBAR problem and the Thirring model”, Stud. Appl. Math. 84 (1991), 207–220.

    Article  MathSciNet  Google Scholar 

  35. Y. Zhang, “Global strong solution to a nonlinear Dirac type equation in one dimension, Nonlin. Anal.: Th. Meth. Appl. 80 (2013), 150–155.

    Article  MathSciNet  Google Scholar 

  36. Y. Zhang and Q. Zhao, “Global solution to nonlinear Dirac equation for Gross–Neveu model in 1 + 1 dimensions, Nonlin. Anal.: Th. Meth. Appl. 118 (2015), 82–96.

    Google Scholar 

  37. X. Zhou, “L 2-Sobolev space bijectivity of the scattering and inverse scattering transforms”, Comm. Pure Appl. Math., 51 (1998), 697–731.

    Article  MathSciNet  Google Scholar 

  38. X. Zhou, “Inverse scattering transform for systems with rational spectral dependence”, J. Diff. Eqs. 115 (1995), 277–303.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.S. gratefully acknowledges financial support from the project SFB-TRR 191 “Symplectic Structures in Geometry, Algebra and Dynamics” (Cologne University, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Pelinovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pelinovsky, D.E., Saalmann, A. (2019). Inverse Scattering for the Massive Thirring Model. In: Miller, P., Perry, P., Saut, JC., Sulem, C. (eds) Nonlinear Dispersive Partial Differential Equations and Inverse Scattering. Fields Institute Communications, vol 83. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9806-7_11

Download citation

Publish with us

Policies and ethics