Skip to main content

Integron Identification in Bacterial Genomes and Cassette Recombination Assays

  • Protocol
  • First Online:
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2075))

Abstract

Integrons are genetic elements involved in bacterial adaptation to the environment. Sedentary chromosomal integrons (SCIs) can stockpile and rearrange a myriad of different functions encoded in gene cassettes. Through their association with transposable elements and conjugative plasmids, some SCIs have acquired mobility and are now termed Mobile Integrons (MIs). MIs have reached the hospitals and are involved in the rise and spread of antibiotic resistance genes through horizontal gene transfer among numerous bacterial species. Here we aimed at describing methods for the detection of integrons in sequenced bacterial genomes as well as for the experimental characterization of the activity of their different components: the integrase and the recombination sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3(12):1669–1683

    Article  CAS  PubMed  Google Scholar 

  2. Fluit AC, Schmitz FJ (2004) Resistance integrons and super-integrons. Clin Microbiol Infect 10(4):272–288

    Article  CAS  PubMed  Google Scholar 

  3. Partridge SR et al (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33(4):757–784

    Article  CAS  PubMed  Google Scholar 

  4. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4(8):608–620

    Article  CAS  PubMed  Google Scholar 

  5. Rowe-Magnus DA, Guerout AM, Mazel D (2002) Bacterial resistance evolution by recruitment of super-integron gene cassettes. Mol Microbiol 43(6):1657–1669

    Article  CAS  PubMed  Google Scholar 

  6. Jacquier H et al (2009) Translation regulation of integrons gene cassette expression by the attC sites. Mol Microbiol 72(6):1475–1486

    Article  CAS  PubMed  Google Scholar 

  7. Cambray G et al (2011) Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MacDonald D et al (2006) Structural basis for broad DNA specificity in integron recombination. Nature 440:1157–1162

    Article  CAS  PubMed  Google Scholar 

  9. Guerin E et al (2009) The SOS response controls integron recombination. Science 324(5930):1034

    Article  CAS  PubMed  Google Scholar 

  10. Collis CM et al (1998) Binding of the purified integron DNA integrase Intl1 to integron- and cassette-associated recombination sites. Mol Microbiol 29(2):477–490

    Article  CAS  PubMed  Google Scholar 

  11. Bouvier M, Demarre G, Mazel D (2005) Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J 24(24):4356–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loot C et al (2010) Cellular pathways controlling integron cassette site folding. EMBO J 29(15):2623–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loot C et al (2012) Replicative resolution of integron cassette insertion. Nucleic Acids Res 40:8361–8370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cury J et al (2016) Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 44(10):4539–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loot C et al (2017) Differences in Integron cassette excision dynamics shape a trade-off between Evolvability and genetic capacitance. MBio 8(2)

    Google Scholar 

  16. Demarre G et al (2005) A new family of mobilizable suicide plasmids based on the broad host range R388 plasmid (IncW) or RP4 plasmid (IncPα) conjugative machineries and their cognate E. coli host strains. Res Microbiol 156(2):245–255

    Article  CAS  PubMed  Google Scholar 

  17. Bouvier M et al (2009) Structural features of single-stranded integron cassette attC sites and their role in strand selection. PLoS Genet 5(9):e1000632

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baharoglu Z, Bikard D, Mazel D (2010) Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 6(10):e1001165

    Article  PubMed  PubMed Central  Google Scholar 

  19. Escudero JA et al (2016) Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation. Nat Commun 7:10937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Demarre G et al (2007) Identification of key structural determinants of the IntI1 integron integrase that influence attC x attI1 recombination efficiency. Nucleic Acids Res 35(19):6475–6489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Biskri L et al (2005) Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J Bacteriol 187(5):1740–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinez E, de la Cruz F (1990) Genetic elements involved in Tn21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMBO J 9:1275–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parsot C (1986) Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase. EMBO J 5(11):3013–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lorenz R et al (2011) ViennaRNA Package 2.0. Algorithm Mol Biol 6:26

    Article  Google Scholar 

  25. Mathews DH et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101(19):7287–7292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Mazel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vit, C., Loot, C., Escudero, J.A., Nivina, A., Mazel, D. (2020). Integron Identification in Bacterial Genomes and Cassette Recombination Assays. In: de la Cruz, F. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 2075. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9877-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9876-0

  • Online ISBN: 978-1-4939-9877-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics