Skip to main content

Direct Estrogen Effects on the Cardiovascular System

  • Chapter
Selective Estrogen Receptor Modulators

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Coronary artery disease (CAD) is the leading cause of death among women (1). The risk of CAD is low in premenopausal women and increases dramatically after menopause. Data from the Framingham Heart Study assessed sex-specific patterns of CAD and demonstrated that although men were at greater risk of heart disease than women at all ages, the difference in risk diminished as the participants got older, mainly because of a surge in the number of coronary events in women after age 45 (2). Whether this increased risk in women is a result of menopause with its associated loss of hormonal protection versus confounding factors such as aging has been debated. Observational studies have shown major reductions (approx 50%) in risk for CAD in postmenopausal women who take replacement estrogen or combined estrogen/progestin preparations (3). The largest of these, the Nurses Health Study, was established in 1976, when 121,700 female nurses between 30 and 55 years of age completed a questionnaire documenting their medical history and lifestyle. Every two years, followup questionnaires were sent out to update risk factors and new disease. Using data collected from this study, Grodstein et al. reported that hormone replacement therapy (estrogen or estrogen/progestin) decreased the risk of cardiovascular disease in postmenopausal women by approx 50% (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association. 2000 Heart and Stroke Statistical Update. Dallas, Tex. American Heart Association, 1999.

    Google Scholar 

  2. Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26 year follow–up of the Framingham population. Am Heart J 1986; 111: 383–390.

    Article  PubMed  CAS  Google Scholar 

  3. Stampfer MJ, Colditz GA. Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prey Med 1991; 20: 47–63.

    Article  CAS  Google Scholar 

  4. Grodstein F, Stampfer MJ, Manson JE, et al. Postmenopausal estrogen and progestin use and the risk of cardiovascular disease. N Engl J Med 1996; 335: 453–461.

    Article  PubMed  CAS  Google Scholar 

  5. Barrett–Connor E. Postmenopausal estrogen and prevention bias. Ann Intern Med 1991; 115: 455–456.

    PubMed  Google Scholar 

  6. Roussouw JE. Estrogen for prevention of coronary heart disease: putting the brakes on the bandwagon. Circulation 1996; 94: 2982–2985.

    Article  Google Scholar 

  7. PEPI Trial writing group. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interactions (PEPI) Trial. JAMA 1995; 273: 199–208.

    Article  Google Scholar 

  8. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA 1998; 280: 605–613.

    Article  PubMed  CAS  Google Scholar 

  9. Herrington DM, Reboussin DM, Broshnihan B, et al. Effects of estrogen replacement on the progression of coronary artery atherosclerosis. N Engl J Med 2000; 343: 522–529.

    Article  PubMed  CAS  Google Scholar 

  10. Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L. Markers of myocardial damage and inflammation in relation to long–term mortality in unstable coronary artery disease. N Engl J Med 2000; 343: 1139–1147.

    Article  PubMed  CAS  Google Scholar 

  11. Cushman M, Legault C, Barrett–Connor E, et al. Effect of postmenopausal hormones on inflammation–sensitive proteins: The Postmenopausal Estrogen/Progestin Interventions (PEPI) Study. Circulation 1999; 100: 711–722.

    Article  Google Scholar 

  12. Teede HJ, Mcgrath BP, Smolich JJ, et al. Postmenopausal hormone replacement therapy increases coagulation activity and fibrinolysis. Arterioscler Thromb Vasc Biol 2000; 20: 1404–1409.

    Article  PubMed  CAS  Google Scholar 

  13. Scarabin PY, Alhene–Gelas M, Plu–Bureau G, Taisne P, Agher R, Aiach M. Effects of oral and transdermal estrogen/progesterone regimens on blood coagulation and fibrinolysis in postmenopausal women. A randomized trial. Arterioscler Thromb Vasc Biol 1997; 17: 3071–3078.

    Article  PubMed  CAS  Google Scholar 

  14. Koh KK, Mincemoyer R, Bui MM, et al. Effects of hormone replacement therapy on fibrinolysis in postmenopausal women. N Engl J Med 1997; 336: 683–690.

    Article  PubMed  CAS  Google Scholar 

  15. Davies MJ. Reactive oxygen species, metalloproteinases, and plaque stability. Circulation 1998; 97: 2382–2383.

    Article  PubMed  CAS  Google Scholar 

  16. Wingrove CS, Garr E, Godsland IF, Stevenson JC. 17beta–estradiol enhances release of matrix metalloproteinase–2 from human vascular smooth muscle cells. Biochim Biophys Acta 1998; 1406: 169–174.

    Article  PubMed  CAS  Google Scholar 

  17. Cannon RO 3rd, Yang BK, Ardans J, et al. Increased serum matrix metalloproteinase–9 expression in postmenopausal women on estrogen therapy. J Am Coll Cardiol 2000; 35 (abst.): 303A.

    Google Scholar 

  18. Losordo DW, Kearney M, Kin EA, Jejanowski J, Isner JM. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation 1994; 89: 1501–1510.

    Article  PubMed  CAS  Google Scholar 

  19. The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials 1998; 19: 61–109.

    Article  Google Scholar 

  20. Press Release

    Google Scholar 

  21. Clowes AW, Reidy MA, Clowes MM. Mechanisms of arterial stenosis after arterial injury. Lab Invest 1983; 49: 208–215.

    PubMed  CAS  Google Scholar 

  22. Oparil S. Corcoran Lecture. Hypertension 1999; 33: 170–176.

    Article  PubMed  CAS  Google Scholar 

  23. Schwartz SM, deBlois D, O Brien E. The intima: soil for atherosclerosis and restenosis. Circ Res 1995; 77: 445–465.

    Article  PubMed  CAS  Google Scholar 

  24. Li G, Chen Y, Kelpke SS, Oparil S, Thompson JA. Estrogen attenuates integrin Beta2–dependent fibroblast migration after inhibition of osteopontin production in vascular smooth cells. Circulation 2000; 101: 2949–2955.

    Article  PubMed  CAS  Google Scholar 

  25. Majesky MW. Neointima formation after acute vascular injury. Role of counteradhesive extracellular matrix proteins. Texas Heart Institute Journal 1994; 21: 78–85.

    PubMed  CAS  Google Scholar 

  26. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury: smooth muscle growth in the absence of endothelium. Lab Invest 1983; 49: 327–333.

    PubMed  CAS  Google Scholar 

  27. Saphir O, Gore I. Evidence for an inflammatory basis of coronary arteriosclerosis in the young. Archiv Pathol 1950; 49: 418–426.

    Google Scholar 

  28. Kohchi K, Takebayashi S, Hiroki T, Nobuyoshi M. Significance of adventitial inflammation of the coronary artery in patients with unstable angina: results at autopsy. Circulation 1985; 71: 709–716.

    Article  PubMed  CAS  Google Scholar 

  29. Prescott MF, Mcbride CK, Court M. Development of intimai lesions after leukocyte migration into the vascular wall. Am J Pathol 1989; 135: 835–846.

    PubMed  CAS  Google Scholar 

  30. Beesley JE, Honey AC, Martin JF. Ultrastructural assessment of lesion development in the collared rabbit carotid artery model. Cells Mater 1992; 2: 201–208.

    Google Scholar 

  31. Shi Y, O’Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996; 94: 1655–1664.

    Article  PubMed  CAS  Google Scholar 

  32. Shi Y, Pieniek M, Fard A, O’Brien JE, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation 1996; 93: 340–348.

    Article  PubMed  CAS  Google Scholar 

  33. Li G, Chen S, Oparil S, Chen Y, Thompson JA. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 2000; 101: 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  34. Clark EA, Bruge JS. Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–239.

    Article  PubMed  CAS  Google Scholar 

  35. Huttenlocher A, Ginsberg MH, Horwitz AF. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand–binding affinity. J Cell Biol 1996; 134: 1551–1562.

    Article  PubMed  CAS  Google Scholar 

  36. Slepian MJ, Massia SP, Dehdashti B, Fritz A, Whitesell L. ß3–integrins rather than ßl-integrins dominate integrin–matrix interactions involved in postinjury smooth muscle cell migration. Circulation 1998; 97: 1818–1827.

    Article  PubMed  CAS  Google Scholar 

  37. Liaw L, Lombardi DM, Almeida MM, Schwartz MM, deBlois D, Giachelli CM. Neutralizing antibodies directed against osteopontin inhibit rat carotid neointimal thickening after endothelial denudation. Arterioscler Thromb Vasc Biol 1997; 17: 188–193.

    Article  PubMed  CAS  Google Scholar 

  38. Choi ET, Engel L, Vallow AD, et al. Inhibition of neointimal hyperplasia by blocking av133 integrin with a small peptide antagonist GpenGRGDSPCA. J Vasc Surg 1994; 19: 125–134.

    Article  PubMed  CAS  Google Scholar 

  39. Liaw L, Skinner MP, Raines EW, Ross R, Cheresh DA, Schwartz SM. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrin. Role of avß3 in smooth muscle cell migration to osteopontin in vitro. J Clin Invest 1995; 95: 713–724.

    Article  PubMed  CAS  Google Scholar 

  40. Chen S, Li H, Durand J, Oparil S, Chen Y. Estrogen reduces myointimal proliferation after balloon injury of rat carotid artery. Circulation 1996; 93: 577–584.

    Article  PubMed  CAS  Google Scholar 

  41. Oparil S, Levine RL, Chen S, Durand J, Chen Y. Sexually dimorphic response of the balloon–injured rat carotid artery to hormone treatment. Circulation 1997; 95: 1301–1307.

    Article  PubMed  CAS  Google Scholar 

  42. Sullivan TR, Karas RH, Aronovitz M, et al. Estrogen inhibits the response to injury in a mouse carotid artery model. J Clin Invest 1995; 96: 2482–2488.

    Article  PubMed  CAS  Google Scholar 

  43. Lindner V, Fingerle J, Reidy MA. Mouse model of arterial injury. Circ Res 1993; 73: 792–796.

    Article  PubMed  CAS  Google Scholar 

  44. Foegh ML, Asotra S, Howell MH, Ramwell PW. Estradiol inhibition of arterial neointimal hyperplasia after balloon injury. J Vasc Surg 1994; 19: 722–726.

    Article  PubMed  CAS  Google Scholar 

  45. Williams JK, Honore EK, Washburn SA, Clarkson TB. Effects of hormone replacement therapy on reactivity of atherosclerotic coronary arteries in cynomolgus monkeys. J Am Coll Cardiol 1994; 24: 1757–1761.

    Article  PubMed  CAS  Google Scholar 

  46. Miyagawa K, Rosch, Stanczyk F, Hersmeyer K. Medroxyprogesterone interferes with ovarian steroid protection against coronary vasospasm. Nat Med 1997; 3: 324–327.

    Article  PubMed  CAS  Google Scholar 

  47. Psaty BM, Heckbert SR, Atkins D, et al. The risk of myocardial infarction associated with the combined use of estrogens and progestins in postmenopausal women. Arch Intern Med 1994; 154: 1333–1339.

    Article  PubMed  CAS  Google Scholar 

  48. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med 1999; 340: 1801–1810.

    Article  PubMed  CAS  Google Scholar 

  49. Carson-Jurica MA, Schrader JT, O Malley BW. Steroid receptor family: structure and functions. Endocr Rev 1990; 11: 201–220.

    Article  PubMed  CAS  Google Scholar 

  50. Kuiper GGJM, Carllson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptor alpha and beta. Endocrinology 1997; 38: 863–870.

    Article  Google Scholar 

  51. Paech K, Webb P, Kuiper G, et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 1997; 277: 1508–1510.

    Article  PubMed  CAS  Google Scholar 

  52. Makela S, Savolainen H, Aavik E, et al. Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors ct and 3. Proc Natl Acad Sci USA 1999; 96: 7077–7082.

    Article  PubMed  CAS  Google Scholar 

  53. Hodges YK, Richer JK, Horwitz KB, Horwitz LD. Variant estrogen and progesterone receptor messages in human vascular smooth muscle. Circulation 1999; 99: 2688–2693.

    Article  PubMed  CAS  Google Scholar 

  54. Karas RH, Patterson BL, Mendelsohn ME. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation 1994; 89: 1943–1950.

    Article  PubMed  CAS  Google Scholar 

  55. Register TC, Adams MR. Coronary artery and cultured aortic smooth muscle cells express mRNA for both the classical estrogen receptor and the newly described estrogen receptor beta. J Steroid Biochem Mol Biol 1998; 64: 187–191.

    Article  PubMed  CAS  Google Scholar 

  56. Hodges YK, Tung L, Yan X, Graham JD, Horwitz KB, Horwitz LD. Estrogen receptors alpha and beta: prevalence of estrogen receptor beta mRNA in human vascular smooth muscle and transcriptional effects. Circulation 2000; 101: 1792–1798.

    Article  PubMed  CAS  Google Scholar 

  57. Lindner V, Kim SK, Karas RH, Kuiper GGJM, Gustafsson J, Mendelsohn ME. Increased expression of estrogen receptor–(3 mRNA in male blood vessels after vascular injury. Circ Res 1998; 83: 224–229.

    Article  PubMed  CAS  Google Scholar 

  58. lafrati MD, Karas RH, Aronovitz M, et al. Estrogen inhibits the vascular injury response in estrogen receptor alpha–deficient mice. Nat Med 1997; 3: 545–548.

    Article  Google Scholar 

  59. Karas RH, Hodgin JB, Kwoun M, et al. Estrogen inhibits the vascular injury response in estrogen receptor beta–deficient mice. Proc Natl Acad Sci USA 1999; 96: 15133–15136.

    Article  PubMed  CAS  Google Scholar 

  60. Bakir S, Mori T, Durand J, Chen Y, Thompson JA, Oparil S. Estrogen–induced vasoprotection is estrogen receptor dependent: evidence from the balloon-injured rat carotid artery model. Circulation 2000; 101: 2342–2344.

    Article  PubMed  CAS  Google Scholar 

  61. Freay AD, Curtis SW, Korach KS, Rubanyi GM. Mechanism of vascular smooth muscle relaxation by estrogen in depolarized rat and mouse aorta: role of nuclear estrogen receptor and Ca2+ uptake. Circ Res 1997; 81: 242–248.

    Article  PubMed  CAS  Google Scholar 

  62. Stefano GB, Prevot V, Beauvillain J, et al. Cell–surface estrogen receptors mediate calcium dependent nitric oxide release in human endothelia. Circulation 2000; 101: 1594–1597.

    Article  PubMed  CAS  Google Scholar 

  63. Chen Z, Yuhanna IS, Galcheva–Gorgova ZI, Karas RH, Mendelsohn ME, Shawl PW. Estrogen receptor alpha mediates the non–genomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 1999; 103: 401–406.

    Article  PubMed  CAS  Google Scholar 

  64. Simons M, Rosenberg RD. Antisense nonmuscle myosin heavy chain and c–myb oligonucleotides suppress smooth muscle cell proliferation in vitro. Circ Res 1992; 70: 835–843.

    Article  PubMed  CAS  Google Scholar 

  65. Simons M, Edelman ER, Dekeyser JL, Langer R, Rosenberg RD. Antisense c–myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 1992; 359: 67–70.

    Article  PubMed  CAS  Google Scholar 

  66. Gunn J, Holt CM, Francis SE, et al. The effects of oligonucleotides to c–myb on vascular smooth muscle cell proliferation and neointima formation after porcine coronary angioplasty. Circ Res 1997; 80: 520–531.

    Article  PubMed  CAS  Google Scholar 

  67. Chen S, Chen Y, Miller D, Li H, Oparil S. Mithramycin inhibits myointimal proliferation after balloon injury of the rat carotid artery in vivo. Circulation 1994; 90: 2468–2473.

    Article  PubMed  CAS  Google Scholar 

  68. Li G, Chen Y, Greene GL, Oparil S, Thompson JA. Estrogen inhibits vascular smooth muscle cell–dependent adventitial fibroblast migration in vitro. Circulation 1999; 100: 1639–1645.

    Article  PubMed  CAS  Google Scholar 

  69. Busse R, Fleming I. Endothelium dysfunction in atherosclerosis. J Vasc Res 1996; 33: 181–194.

    Article  PubMed  CAS  Google Scholar 

  70. Williams JK, Adams MR, Herrington DM, Clarkson TB. Short–term administration of estrogen and vascular responses of atherosclerotic coronary arteries. J Am Coll Cardiol 1992; 20: 452–457.

    Article  PubMed  CAS  Google Scholar 

  71. Collins P, Rosano GMC, Sarrel PM, et al. 17β–estradiol attenuates acetylcholine induced coronary arterial constriction in women but not in men with coronary heart disease. Circulation 1995; 92: 24–30.

    Article  PubMed  CAS  Google Scholar 

  72. Reis SE, Gloth ST, Blumenthal RS, et al. Ethinyl estradiol acutely attenuates abnormal coronary vasomotor responses to acetylcholine in postmenopausal women. Circulation 1994; 89: 52–60.

    Article  PubMed  CAS  Google Scholar 

  73. Herrington DM, Braden GA, Williams JK, Morgan TM. Endothelial–dependent coronary vasomotor responsiveness in postmenopausal women with and without estrogen replacement. Am J Cardiol 1994; 73: 951–952.

    Article  PubMed  CAS  Google Scholar 

  74. White CR, Shelton J, Chen S, et al. Estrogen restores endothelial cell function in an experimental model of vascular injury. Circulation 1997; 96: 1624–1630.

    Article  PubMed  CAS  Google Scholar 

  75. Krasinski K, Spyridopoulos I, Asahara T, van der Zee R, Isner JM, Losordo DW. Estradiol accelerates functional endothelial recovery after arterial injury. Circulation 1997; 95: 1768–1772.

    Article  PubMed  CAS  Google Scholar 

  76. Asahara T, Banters C, Pastore C, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon–injured rat carotid artery. Circulation 1995; 91: 2793–2801.

    Article  PubMed  CAS  Google Scholar 

  77. Von der Leyen HE, Gibbons GH, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995; 92: 1137–1141.

    Article  PubMed  Google Scholar 

  78. Cooke JP, Dzau VJ. Nitric oxide synthase: role in the genesis of cardiovascular disease. Ann Rev Med 1997; 48: 489–509.

    Article  PubMed  CAS  Google Scholar 

  79. Minor RL, Myers PR, Guerra R, Bates JN, Harrison DG. Diet–induced atherosclerosis increases the release of nitric oxide from rabbit aorta. J Clin Invest 1990; 86: 2109–2196.

    Article  PubMed  CAS  Google Scholar 

  80. Buttery LDK, Springall DR, Chester AH, et al. Inducible nitric oxide synthase is present within human atherosclerotic lesion and promotes the formation and activity of peroxynitrite. Lab Invest 1996; 75: 77–185.

    PubMed  CAS  Google Scholar 

  81. Worrall NK, Lazenby WD, Misko TP, et al. Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J Exp Med 1995; 181: 63–70.

    Article  PubMed  CAS  Google Scholar 

  82. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology, and clinical relevance. Eur J Clin Invest 1991; 21: 361–374.

    Article  PubMed  CAS  Google Scholar 

  83. Clancy RM, Abramson SB. Nitric oxide: a novel mediator of inflammation. Proc Soc Exp Biol & Med 1995; 210: 93–101.

    CAS  Google Scholar 

  84. Yan ZQ, Hansson GK. Overexpression of inducible nitric oxide synthase by neointimal smooth muscle cells. Circ Res 1998; 82: 21–29.

    Article  PubMed  CAS  Google Scholar 

  85. Huie RE, Padmaja S. The reaction rate of nitric oxide with superoxide. Free Rad Res Commun 1993; 18: 195–199.

    Article  CAS  Google Scholar 

  86. Beckmann JS, Ye YZ, Anderson PG, et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler 1994; 375: 81–88.

    Article  PubMed  CAS  Google Scholar 

  87. Banning AP, Groves PH, Buttery LDK, et al. Reciprocal changes in endothelial and inducible nitric oxide synthase expression following carotid angioplasty in the pig. Atherosclerosis 1999; 145: 17–32.

    Article  PubMed  CAS  Google Scholar 

  88. Koglin J, Glysing–jensen T, Mudgett JS, Russell ME. Exacerbated transplant arteriosclerosis in inducible nitric oxide–deficient mice. Circulation 1998; 97: 2059–2065.

    Article  PubMed  CAS  Google Scholar 

  89. Yamashi K, Edington HD, McClosky C, et al. Reversal of impaired wound repair in iNOS–deficient mice by topical adenoviral–mediated iNOS gene transfer. J Clin Invest 1998; 101: 967–971.

    Article  Google Scholar 

  90. Shears LL, Kibbe MR, Murdock AD, et al. Efficient inhibition of intimal hyperplasia by adenovirusmediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. J Am Coll Surg 1998; 187: 295–306.

    Article  PubMed  Google Scholar 

  91. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium–derived nitric oxide in vascular remodeling. J Clin Invest 1998; 101: 731–736.

    Article  PubMed  CAS  Google Scholar 

  92. Kaul S, Cereck B, Rengstrom J, et al. Polymeric–based perivascular delivery of a nitric oxide donor inhibits intimai thickening after balloon denudation arterial injury: role of nuclear factor–kappa B. J Am Coll Cardiol 2000; 35: 493–501.

    Article  PubMed  CAS  Google Scholar 

  93. Guo J, Milhoan KA, Tuan RS, Lefer AM. Beneficial effects of SPM–5185, a cystiene-containing nitric oxide donor, in rat carotid artery intimal injury. Circ Res 1994; 75: 77–84.

    Article  PubMed  CAS  Google Scholar 

  94. Lee JS, Adrie C, Jacob HJ, et al. Chronic inhalation of nitric oxide inhibits neointimal formation after balloon-induced arterial injury. Circ Res 1996; 78: 337–342.

    Article  PubMed  CAS  Google Scholar 

  95. Van der Leyen HE, Gibbons GH, et al. Gene therapy inhibiting neointimal hyperplasia: in vivo transfer of endothelial nitric oxide synthase gene. Proc Natl Acad Sci USA 1995; 92: 1137–1141.

    Article  PubMed  Google Scholar 

  96. Chaux A, Ruan XM, Kaul S, et al. Perivascular delivery of nitric oxide donor inhibits neointimal hyperplasia in vein grafts implanted in the arterial circulation. J Thorac Cardiovasc Surg 1998; 115: 604–614.

    Article  PubMed  CAS  Google Scholar 

  97. Chyu KY, Dimayuga P, Zhu J, Nilsson J, Kaul S, Shah PK, Cereck B. Decreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice. Circ Res 1999; 85: 1–11.

    Article  Google Scholar 

  98. Zancan V, Santagati S, Bolego C, Vegeto E, Maggi A, Puglisi L. 17beta-estradiol decreases nitric oxide synthase II synthesis in vascular smooth muscle cells, Endocrinology 1999; 140: 2004–2009.

    Article  PubMed  CAS  Google Scholar 

  99. Hayashi T, Yamada K, Esaki T, et al. Estrogen increases endothelium nitric oxide by a receptor-mediated system. Biochem Biophys Res Commun 1995; 195: 847–855.

    Article  Google Scholar 

  100. Kauser K, Sonnenberg D, Tse J, Rubanyi GM. 17beta-estradiol attenuates endotoxin-induced excessive nitric oxide production in ovariectomized rats in vivo. Am J Physiol 1997;273:HSO6–HSO9.

    Google Scholar 

  101. Keaney JF, Shwaery GT, Xu A, et al. 17β–estradiol preserves endothelial vasodilator function and limits low density lipoprotein oxidation in hypercholesterolemic swine. Circulation 1994; 89: 2251 2259.

    Google Scholar 

  102. Rifici VA, Khachadusian AK. The inhibition of low density lipoprotein oxidation by 17β–estradiol. Metabolism 1992; 41: 1110–1114.

    Article  PubMed  CAS  Google Scholar 

  103. Sack MN, Rader DJ, Cannon RO 3rd. Estrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. Lancet 1994; 343: 269–270.

    Article  PubMed  CAS  Google Scholar 

  104. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999; 340: 115–126.

    Article  PubMed  CAS  Google Scholar 

  105. Hwang S, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM–1, ICAM–1, and E–selectin in carotid atherosclerosis and incident coronary heart disease cases: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1997; 96: 4219–4225.

    Article  PubMed  CAS  Google Scholar 

  106. Caulin-Glaser T, Watson CA, Pardi R, Bender JR. Effects of 17beta–estradiol on cytokine-induced endothelial cell adhesion molecule expression. J Clin Invest 1996; 98: 36–42.

    Article  PubMed  CAS  Google Scholar 

  107. Koh KK, Bui MN, Mincemoyer R, Cannon RO 3rd. Effects of hormone replacement therapy on inflammatory cell adhesion molecules in postmenopausal healthy women. Am J Cardiol 1997; 80: 1505–1507.

    Article  PubMed  CAS  Google Scholar 

  108. Lagrand WK, Visser CA, Hermens WT, et al. C–reactive protein as a cardiovascular risk factor: more than an epiphenomenon. Circulation 1999; 100: 96–102.

    Article  PubMed  CAS  Google Scholar 

  109. Ridker PM, Cushman M, Stampfer MJ, Trary RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336: 973–979.

    Article  PubMed  CAS  Google Scholar 

  110. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH. Prospective study of C–reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 1998; 98: 731–733.

    Article  PubMed  CAS  Google Scholar 

  111. Ridker PM, Hennekens CH, Rifai N, Buring JE, Manson JE. Hormone replacement therapy and increased plasma concentrations of C-reactive protein. Circulation 1999; 100: 713–716.

    Article  PubMed  CAS  Google Scholar 

  112. Caulin–Glaser T, Farrell WJ, Pfau SE, et al. Modulation of circulating cellular adhesion molecules in postmenopausal women with coronary artery disease. J Am Coll Cardiol 1998; 31: 1555–1560.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Goyal, M.K., Oparil, S. (2002). Direct Estrogen Effects on the Cardiovascular System. In: Manni, A., Verderame, M.F. (eds) Selective Estrogen Receptor Modulators. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-157-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-157-2_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9665-9

  • Online ISBN: 978-1-59259-157-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics