Skip to main content

Cerebral Zinc Metabolism in Alzheimer’s Disease

  • Chapter
Molecular Mechanisms of Dementia

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Most cases of Alzheimer’s disease (AD) are sporadic, and overall estimates of lifetime risk of developing AD in first-degree relatives of probands with AD suggest that only ≈50% of AD cases are influenced by hereditary risk factors (1). Meanwhile, a relatively low concordance rate of 40% in monozygotic twins (2) implicates nongenetic factors in the expression of the disease. Therefore, environmental factors could have a major impact on the pathogenesis of AD. Several environmental factors have been proposed to influence the onset of AD. However, the study of the influence of a candidate stressor on the generation of hallmark pathology of AD has been a classic approach that initially implicated aluminum exposure in the generation of neurofibrillary tangles (3,4). We have similarly explored candidate environmental or dietary factors that may impact on the deposition of Aβ as amyloid in the cerebral cortex—the other hallmark of AD neuropathology. Our approaches have been by studies of human amyloid protein precursor (APP) physiology, animal models, and in vitro models of Aβ aggregation. To date, although we have provocative data from in vivo studies, the in vitro studies of Aβ aggregation are most evolved. We have found that the solubility of the Aβ peptide is sensitively destabilized by the presence of zinc. This finding targets zinc as an important candidate environmental factor that could modulate Aβ solubility, since the brain is a unique compartment that sequesters zinc to high concentrations, whereas the blood—brain barrier in health serves to prevent undue exposure of the brain to this highly neurotoxic element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breitner, J., Siverman, J. S., Mohs, R. C., and Davis, K. L. (1988) Familial aggregation in Alzheimer’s disease:comparison of risk among relatives of early-and late onset cases, and among male and female relatives in successive generations, Neurology 38, 207–212.

    Article  PubMed  CAS  Google Scholar 

  2. Rapoport, S. I., Pettigrew, K. D., and Schapiro, M. B. (1991) Discordance and concordance of dementia of the Alzheimer type (DAT) in monozygotic twins indicate heritable and sporadic forms of Alzheimer’s disease, Neurology 41, 1549–1553.

    Article  PubMed  CAS  Google Scholar 

  3. Klatzo, I., Wisniewski, H., and Streicher, E. (1965) Experimental production of neurofibrillary degeneration. 1. Light microscopic observations, J. Neuropathol. Exp. Neurol. 24, 187–199.

    Article  PubMed  CAS  Google Scholar 

  4. Terry, R. D. and Pena, C. (1965) Experimental production of neurofibrillary degeneration. 2. Electron microscopy, phosphatase histochemistry and electron probe analysis, J. Neuropathol. Exp. Neurol. 24, 200–210.

    Article  PubMed  CAS  Google Scholar 

  5. Wasco, W., Bupp, K., Magendantz, M., Gusella, J. F., Tanzi, R. E., and Solomon, F. (1992) Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated 3 precursor protein, Proc. Natl. Acad. Sci. USA 89, 10758–10762.

    Article  PubMed  CAS  Google Scholar 

  6. Wasco, W., Brook, J. D., and Tanzi, R. E. (1993) The amyloid precursor-like protein (APLP) gene maps to the long arm of human chromosome 19, Genomics 15, 238–239.

    Article  Google Scholar 

  7. Wasco, W., Gurubhagavatula, S., Paradis, Md, Romano, D., Sisodia, S. S., Hyman, B. T., Neve, R. L., and Tanzi, R. E. (1993) Isolation and characterization of the human APLP2 gene encoding a homologue of the Alzheimer’s associated amyloid ß protein precursor, Nature Genet. 5, 95–100.

    Article  PubMed  CAS  Google Scholar 

  8. Bush, A. I., Multhaup, G., Moir, R. D., Williamson, T. G., Small, D. H., Rumble, B., Pollwein, P., Beyreuther, K., and Masters, C. L. (1993) A novel zinc(II) binding site modulates the function of the bA4 amyloid protein precursor ofAlzheimer’s disease, J. Biol. Chem. 268, 16109–16112.

    PubMed  CAS  Google Scholar 

  9. Bush, A. I., Pettingell, W. H., Paradis M., Tanzi, R. E., and Wasco, W. (1994) The amyloid 3-protein precursor and its mammalian homologues: evidence for a zinc-modulated heparin-binding superfamily, J. Biol. Chem. 269, 26618–26621.

    PubMed  CAS  Google Scholar 

  10. Rosen, D. R., Martin-Morris, L., Luo, L., and White, K. (1989) A drosophila gene encoding a protein resembling the human 3-amyloid protein precursor, Proc. Natl. Acad. Sci. USA 86, 2478–2482.

    Article  PubMed  CAS  Google Scholar 

  11. Daigle, I. and Li, C. (1993) Apl-1, a Caenorhabditis elegans gene encoding a protein related to the human 3-amyloid protein precursor, Proc. Natl. Acad. Sci. USA 90, 12,045–12, 049.

    Google Scholar 

  12. Komiyama, Y., Murakami, T., Egawa, H., Okubo, S., Yasunaga, K., and Murata, K. (1992) Purification of factor XIa inhibitor from human platelets, Thromb. Res. 66, 397–408.

    Article  PubMed  CAS  Google Scholar 

  13. Shivers, B. D., Hilbich, C., Multhaup, G., Salbaum, M., Beyreuther, K., and Seeburg, R. H. (1988) Alzheimer’s disease amyloidogenic glycoprotein: expression pattern in rat brain suggests role in cell contact, EMBO J. 7, 1365–1370.

    PubMed  CAS  Google Scholar 

  14. Milward, E. A., Papadopoulos, R., Fuller, S. J., Moir, R. D., Small, D., Beyreuther, K., and Masters, C. L. (1992) The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor on neunte outgrowth, Neuron 9, 129–137.

    Article  PubMed  CAS  Google Scholar 

  15. Bush, A. I., Martins, R. N., Rumble, B., Moir, R., Fuller, S., Milward, E., Currie, J., Ames, D., Weidemann, A., Fischer, P., Multhaup, G., Beyreuther, K., and Masters, C. L. (1990) The amyloid precursor protein of Alzheimer’s disease is released by human platelets, J. Biol. Chem. 265, 15,977–15, 983.

    Google Scholar 

  16. Baker, R. J., McNeil, J. J., and Lander, H. (1978) Platelet metal levels in normal subjects determined by atomic absorption spectrophotometry, Thromb. Haemostasis 39, 360–365.

    CAS  Google Scholar 

  17. Frederickson, C. J. (1989) Neurobiology of zinc and zinc-containing neurons, Int. Rev. Neurobiol. 31, 145–328.

    Article  PubMed  CAS  Google Scholar 

  18. Cole, G. M., Galasko, D., Shapiro, I. P., and Saitoh T. (1990) Stimulated platelets release amyloid 3-protein precursor, Biochem. Biophys. Res. Commun. 170, 288–295.

    Article  PubMed  CAS  Google Scholar 

  19. Smith, R. P., Higuchi, D. A., and Broze, G. J. Jr. (1990) Platelet coagulation factor X1a-inhibitor, a form of Alzheimer amyloid precursor protein, Science 248, 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  20. Van Nostrand, W. E., Schmaier, A. H., Farrow, J. S., and Cunningham, D. D. (1990) Protease nexin-II (amyloid 3-protein precursor): a platelet a-granule protein, Science 248, 745–748.

    Google Scholar 

  21. Schlossmacher, M. G., Ostaszewski, B. L., Hecker, L. I., Celi, A., Haass, C., Chin, D., Lieberburg, I., Furie, B. C., Furie, B., and Selkoe, D. J. (1992) Detection of distinct isoform patterns of the 3-amyloid precursor protein in human platelets and lymphocytes, Neurobiol. Aging 13, 421–434.

    Article  PubMed  CAS  Google Scholar 

  22. Suenaga, T., Hirano, A., Llena, J. F., Ksiezak-Reding, H., Yen, S. H., and Dickson, D. W. (1990) Modified Bielschowsky and immunocytochemical studies on cerebellar plaques in Alzheimer’s disease, J. Neuropathol. Exp. Neurol. 49, 31–40.

    Article  PubMed  CAS  Google Scholar 

  23. Frederickson, C. J., Perez-Clausell, J., and Danscher, G. (1987) Zinc-containing 7S-NGF complex. Evidence from zinc histochemistry for localization in salivary secretory granules, J. Histochem. Cytochem. 35, 579–583.

    Article  PubMed  CAS  Google Scholar 

  24. Heyns, A. du P., Eldor, A., Yarom, R., and Marx, G. (1985) Zinc-induced platelet aggregation is mediated by the fibrinogen receptor and is not accompanied by release or by thromboxane synthesis, Blood 66, 213–219.

    Google Scholar 

  25. Bush, A. I. (1992) Aspects of the pathophysiology and pathogenesis of Alzheimer’s disease. University of Melbourne.

    Google Scholar 

  26. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B.

    Google Scholar 

  27. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. S. (1992) Amyloid f3-peptide is produced by cultured cells during normal metabolism, Nature 359, 322–325.

    Article  Google Scholar 

  28. Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher

    Google Scholar 

  29. M., Whaley, J., Swindlehurst, C., McCormack, R., Wolfert, R., Selkoe, D., Lieberberg, I., and Schenk, D. (1992) Isolation and quantification of soluble Alzheimer’s 3-peptide from biological fluids, Nature 359, 325–327.

    Article  Google Scholar 

  30. Shoji, M., Golde, T.-E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X.-D., McKay, D. M., Tintner, R., Frangione, B., and Younkin, S. G. (1992) Production of the Alzheimer amyloid 13 protein by normal proteolytic processing, Science 258, 126–129.

    Article  PubMed  CAS  Google Scholar 

  31. Evin, G., Beyreuther, K., and Masters, C. L. (1994) Alzheimer’s disease amyloid precursor protein (AßPP): proteolytic processing, secretases and 13A4 production, Amyloid: Int. J. Exp. Clin. Invest. 1, 263–280.

    CAS  Google Scholar 

  32. Busciglio, J., Gabuzda, D. H., Matsudaira, P., and Yankner, B. A. (1993) Generation of 3-amyloid in the secretory pathway in neuronal and nonneuronal cells, Proc. Natl. Acad. Sci. USA 90, 2092–2096.

    Article  PubMed  CAS  Google Scholar 

  33. Prelli, F., Castaiïo, E., Glenner, G. G., and Frangione, B. (1988) Differences between vascular and plaque core amyloid in Alzheimer’s disease, J. Neurochem. 51, 648–651.

    Article  PubMed  CAS  Google Scholar 

  34. Miller, D. L., Papayannopoulos, I. A., Styles, J., Bobin, S. A., Lin, Y. Y., Biemann, K., and Iqbal, K. (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease, Arch. Biochem. Biophys. 301, 41–52.

    Article  PubMed  CAS  Google Scholar 

  35. Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C. L., and Beyreuther, K. (1991) Aggregation and secondary structure of synthetic amyloid ßA4 peptides of Alzheimer’s disease, J. Mol. Biol. 218, 149–163.

    Article  PubMed  CAS  Google Scholar 

  36. Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., Yates, J., Cotman, C., and Glabe, C. (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/ß amyloid peptide analogs, J. Biol. Chem. 267, 546–554.

    PubMed  CAS  Google Scholar 

  37. Tomski, S. and Murphy, R. M. (1992) Kinetics of aggregation of synthetic b-amyloid peptide, Arch. Biochem. Biophys. 294, 630–638.

    Article  PubMed  CAS  Google Scholar 

  38. Jarrett, J. T., Berger, E. P., and Lansbury, P. T. (1993) The carboxy terminus of the b amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease, Biochemistry 32, 4693–4697.

    Article  PubMed  CAS  Google Scholar 

  39. Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., and Selkoe, D. J. (1992) Mutation of the (3-amyloid precursor protein in familial Alzheimer’s disease increases ß-protein production, Nature 360, 672–674.

    Article  PubMed  CAS  Google Scholar 

  40. Cai, X.-D., Golde, T.-E., and Younkin, S. G. (1993) Release of excess amyloid ß protein from a mutant amyloid ß protein precursor, Science 259, 514–516.

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki, N., Cheung, T. T., Cai, X.-D., Odaka, A., Otvos, L., Eckman, C., Golde, T.-E., and Younkin, S. G. (1994) An increased percentage of long amyloid f3 protein secreted by familial amyloid p protein precursor (bAPP717) mutants, Science 264, 1336–1340.

    Article  PubMed  CAS  Google Scholar 

  42. Teller, J. K., Russo, C., DeBusk, L. M., Angelini, G., Zaccheo, D., Dagna-Bricarelli, F., Scartezzini, P., Bertolini, S., Mann, D. M., Tabaton, M., and Gambetti, R. (1996) Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down’s syndroms, Nat. Med. 2, 93–95.

    Article  PubMed  CAS  Google Scholar 

  43. Younkin, S., Scheuner, D., Song, X., Eckman, C., Citron, M., Suzuki, N., Bird, T., Hardy, J. Hutton, M., Lannfelt, L., Levy-Lahad, F., Peskind, E., Poorkaj, R, Schellenberg, G., Tanzi, R., Viitanen, M., Wasco, W., and Selkoe, D. (1996) The presenilin 1 and 2 mutations linked to familial Alzheimer’s disease increase the extracellular concentration of amyloid ß protein (A(3) ending at A042(43), Neurobiology of Aging 17(4S),149.

    Google Scholar 

  44. Nakamura, T., Shoji, M., HarigayaY., Watanabe, M., Hosoda, K., Cheung, T. T., Shaffer, L. M., Golde, T.-E., Younkin, L H, Younkin, S. G., and Hirai, S. (1994) Amyloid ß protein levels in cerebrospinal fluid are elevated in early-onset Alzheimer’s disease, Ann. Neurol. 36, 903–911.

    Article  PubMed  CAS  Google Scholar 

  45. Nitsch, R. M., Rebeck, G. W., Deng, M., Richardson, U. I., Tennis, M., Schenk, D. B., VigoPelfrey, C., Lieberburg, I., Wurtman, R. J., Hyman, B. T., et al. (1995) Cerebrospinal fluid levels of amyloid beta-protein in Alzheimer’s disease: inverse correlation with severity of dementia and effect of apolipoprotein E genotype, Ann. Neurol. 37, 512–518.

    Google Scholar 

  46. Southwick, P. C., Yamagata, S. K., Echol, C. L., Jr., Higson, G. J., Neynaber, S. A., Parson, R. E., and Munroe, W. A. (1996) Assessment of amyloid beta protein in cerebrospinal fluid as an aid in the diagnosis of Alzheimer’s disease../. Neurochem. 66, 259–265.

    Article  CAS  Google Scholar 

  47. Motter, R., Vigo-Pelfrey, C., Kholodenko, D., Barbour, R., Johnson-Wood, K., Galasko, D., Chang, L., Miller, B., Clark, C., Green, R., Olson, D., Southwick, P., Wolfert, R., Munroe, B., Lieberburg, I., Seubert, P., and Schenk, D. (1995) Reduction of 0-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s Disease, Ann Neurol. 38, 643–648.

    Article  PubMed  CAS  Google Scholar 

  48. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., MontoyaZavala, M., Mucke, L., Paganini, L., Penniman, E., Power, M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F 0-amyloid precursor protein, Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  49. Hsiao, K. K., Borchelt, D. R., Olson, K., Johannsdottir, R., Kitt, C., Yunis, W., Xu, S., Eckman, C., Younkin, S., Price, D., Iadecola, C., Clark, H. B., and Carlson, G. (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins, Neuron 15, 1203–1218.

    Article  PubMed  CAS  Google Scholar 

  50. Bush, A. I., Pettingell, W. H., Multhaup, G., Paradis M., Vonsattel, J.-P., Gusella, J. F., Beyreuther, K., Masters, C. L., and Tanzi, R. E. (1994) Rapid induction of Alzheimer Aß amyloid formation by zinc, Science 265, 1464–1467.

    Article  PubMed  CAS  Google Scholar 

  51. Barrow, C. J. and Zagorski, M. G. (1991) Solution structures of ß peptide and its constituent fragments: relation to amyloid deposits, Science 253, 179–182.

    Article  PubMed  CAS  Google Scholar 

  52. Bush, A. I., Moir, R. D., Rosenkranz, K. M., and Tanzi, R. E. (1995) Zinc and Alzheimer’s disease, Science 268, 1921–1923.

    Article  PubMed  CAS  Google Scholar 

  53. Johnstone, E. M., Chaney, M. O., Norris, F. H., Pascual, R., and Little, S. P. (1991) Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis, Mol. Brain Res. 10, 299–305.

    Article  PubMed  CAS  Google Scholar 

  54. Esler, W. P., Stimson, E. R., Jennings, J. M., Ghilardi, J. R., Mantyh, P., and Maggio, J. E. (1996) Zinc-induced aggregation of human and rat 3-amyloid peptides in vitro, J. Neurochem. 66, 723–732.

    Article  PubMed  CAS  Google Scholar 

  55. Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., and Maggio, J. E. (1993) Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of 0-amyloid peptide, J. Neurochem. 61, 1171–1174.

    Article  PubMed  CAS  Google Scholar 

  56. Halverson, K., Fraser, R E., Kirschner, D. A., and Lansbury, P. T., Jr. (1990) Molecular determinants of amyloid deposition in Alzheimer’s disease: conformational studies of synthetic 0-protein fragments, Biochemistry 29, 2639–2644.

    Article  PubMed  CAS  Google Scholar 

  57. Esch, F. S., Keim, R. S., Beattie, E. C., Blacher, R. W., Culwell, A. R., Oltersdorf, T., McClure, D., and Ward, P. J. (1990) Cleavage of amyloid ß peptide during constitutive processing of its precursor, Science 248, 1122–1124.

    Article  PubMed  CAS  Google Scholar 

  58. Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., and Price, D. L. (1990) Evidence that 0-amyloid protein in Alzheimer’s disease is not derived by normal processing, Science 248, 492–495.

    Article  PubMed  CAS  Google Scholar 

  59. Bush, A. I., Pettingell, W. H., Jr., Paradis, M., and Tanzi, R. E. (1994) Modulation of Aß adhesiveness and secretase site cleavage by zinc, J. Biol. Chem. 269, 12,152–12, 158.

    Google Scholar 

  60. Kasarkis, E. J. (1984) Zinc metabolism in normal and zinc-deficient rat brain, Exp. Neurol. 85, 114–127.

    Article  Google Scholar 

  61. O’Neal, R. M., Pla, G. W., Fox, M. R. S., Gibson, F. S., and Fry, B. E. (1970) Effect of zinc deficiency and restricted feeding on protein and ribonucleic acid metabolism of rat brain, J. Nutr. 100, 491–497.

    PubMed  Google Scholar 

  62. Wallwork, J. C., Milne, D. B., Sims, R. L., and Sandstead, H. H. (1983) Severe zinc deficiency: effects on the distribution of nine elements (potassium, phosphorus, sodium, magnesium, calcium, iron, zinc, copper, and manganese) in regions of the rat brain, J. Nutrition 113, 1895–1905.

    CAS  Google Scholar 

  63. Duncan, M. W., Marini, A. M., Watters, R., Kopin, I. J., and Markey, S. R (1992) Zinc, a neurotoxin to cultured neurons, contaminates cycad flour prepared by traditional Guamanian methods, J. Neurosci. 12, 1523–1537.

    PubMed  CAS  Google Scholar 

  64. Choi, D. W.,Yokoyama, M., and Koh, J. (1988) Zinc neurotoxicity in cortical cell culture, Neuroscience 24, 67–79.

    CAS  Google Scholar 

  65. Weiss, J. H., Hartley, D. M., Koh, J., and Choi, D. W. (1993) AM, PA receptor activation potentiates zinc neurotoxicity, Neuron 10, 43–49.

    Article  PubMed  CAS  Google Scholar 

  66. Assaf, S. Y. and Chung, S.-H. (1984) Release of endogenous Zn2+ from brain tissue during activity, Nature 308, 734–736.

    Article  PubMed  CAS  Google Scholar 

  67. Howell, G. A., Welch, M. G., and Frederickson, C. J. (1984) Stimulation-induced uptake and release of zinc in hippocampal slices, Nature 308, 736–738.

    Article  PubMed  CAS  Google Scholar 

  68. Davies, I. J.T, Musa, M., and Dormandy, T. L. (1968) Measurements of plasma zinc, J. Clin. Pathol. 21, 359–365.

    Article  PubMed  CAS  Google Scholar 

  69. Wolf, G., Scutte, M., and Römhild, W. (1984) Uptake and subcellular distribution of 65zinc in brain structures during the postnatal development of the rat, Neurosci. Lett. 51, 277–280.

    Article  PubMed  CAS  Google Scholar 

  70. Wensink, J., Molenaar, A. J., Woroniecka, U. D., and Van Den Hamer, C. J. (1988) Zinc uptake into synaptosomes, J. Neurochem. 50, 783–789.

    Article  Google Scholar 

  71. Ibata, Y. and Otsuka, N. (1969) Electron microscope demonstration of zinc in the hippocampal formation using Timm’s sulfide-silver technique, J. Histochem. Cytochem. 17, 171–175.

    Article  PubMed  CAS  Google Scholar 

  72. Frederickson, C. J., Klitenick, M. A., Manton, W. I., and Kirkpatrick, J. B. (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat, Brain Res. 273, 335–339.

    Article  PubMed  CAS  Google Scholar 

  73. Perez-Clausell, J. and Danscher, G. (1985) Intravesicular localization of zinc in rat telencephalic boutons, a histochemical study. Brain Res. 337, 91–98.

    Article  PubMed  CAS  Google Scholar 

  74. Friedman, B. and Price, J. L. (1984) Fiber systems in the olfactory bulb and cortex: a study in adult and developing rats, using the Timm method with the light and electron microscope, J. Comp. Neurol. 223, 88–109.

    Article  PubMed  CAS  Google Scholar 

  75. Weiss, J. H., Koh, J., Christine, C. W., and Choi, D. W. (1989) Zinc and LTP, Nature 338, 212.

    Article  PubMed  CAS  Google Scholar 

  76. Hyman, B. T., Van Hoesen, G. W., Kroner, L. J., and Damasio, A. R. (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease, Ann. Neurol. 20, 472–481.

    Article  PubMed  CAS  Google Scholar 

  77. Stewart, G. R., Frederickson, C. J., Howell, G. A., and Gage, F. H. (1984) Cholinergic denervation-induced increase of chelatable zinc in mossy-fiber region of the hippocampal formation, Brain Res. 290, 43–51.

    Article  PubMed  CAS  Google Scholar 

  78. Choi, D. W. (1990) Possible mechanisms limiting N-Methyl-D-Aspartate receptor overactivation and the therapeutic efficacy of N-Methyl-D-Aspartate antagonists, Stroke 21 (Suppl. III), 20–22.

    Google Scholar 

  79. Wenstrup, D., Ehmann, W. D., and Markesbery, W. R. (1990) Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains, Brain Res. 533, 125–131.

    Article  PubMed  CAS  Google Scholar 

  80. Constantinidis, J. (1990) Maladie d’Alzheimer et la théorie du zinc, L ‘Encephale 16, 231–239.

    PubMed  CAS  Google Scholar 

  81. Corrigan, F. M., Reynolds, G. P., and Ward, N. I. (1993) Hippocampal tin, aluminum and zinc in Alzheimer’s disease, Biometals 6, 149–154.

    Article  PubMed  CAS  Google Scholar 

  82. Deng, Q. S., Turk, G. C., Brady, D. R., and Smith, Q. R. (1994) Evaluation of brain element composition in Alzheimer’s disease using inductively-coupled plasma mass spectrometry, Neurobiol. Aging 15 (Suppl. 1), S113 (Abstract).

    Article  Google Scholar 

  83. Lui, E., Fisman, M., Wong, C., and Diaz, F. (1990) Metals and the liver in Alzheimer’s disease: an investigation of hepatic zinc, copper, cadmium, and metallothionein, J. Am. Geriatr. Soc. 38, 633–639.

    PubMed  CAS  Google Scholar 

  84. Backstrom, J. R., Miller, C. A., and Tökés, Z. A. (1992) Characterization of neutral proteinases from Alzheimer-affected and control brain specimens: identification of calcium-dependent metalloproteinases from the hippocampus, J. Neurochem. 58, 983–992.

    Article  PubMed  CAS  Google Scholar 

  85. Uchida, Y., Takio, K., Titani, K., Ihara, Y., and Tomonaga, M. (1991) The growth-inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68-amino acid metallothioneinlike protein, Neuron 7, 337–347.

    Article  PubMed  CAS  Google Scholar 

  86. Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Rimmler, J. B., Locke, P. A., Conneally, P. M., Schmader, K. E., et al. (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer’s disease, Nature Genet. 7, 180–184.

    Article  PubMed  CAS  Google Scholar 

  87. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families, Science 261, 921–923.

    Article  PubMed  CAS  Google Scholar 

  88. Busciglio, J. and Yankner, B. A. (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro, Nature 378, 776–779.

    Article  PubMed  CAS  Google Scholar 

  89. Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K. (1992) Amyloidogenicity of ßA4 and ßA4-containing amyloid protein precursor fragments by metal-catalyzed oxidation, Jr. Biol. Chem. 267, 18210–18217.

    CAS  Google Scholar 

  90. Yates, C. M., Butterworth, J., Tennant, M. C., and Gordon, A. (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J. Neurochem. 55, 1624–1630.

    Article  PubMed  CAS  Google Scholar 

  91. Rebeck, G. W., Reiter, J. S., Strickland, D. K., and Hyman, B. T. (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions, Neuron 11, 575–580.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atwood, C.S., Moir, R.D., Huang, X., Tanzi, R.E., Bush, A.I. (1997). Cerebral Zinc Metabolism in Alzheimer’s Disease. In: Wasco, W., Tanzi, R.E. (eds) Molecular Mechanisms of Dementia. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-471-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-471-9_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5889-4

  • Online ISBN: 978-1-59259-471-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics