Skip to main content

Neurosteroids: From Definition and Biochemistry to Physiopathologic Function

  • Chapter
Neurosteroids

Part of the book series: Contemporary Endocrinology ((COE,volume 16))

Abstract

The relationships between steroid hormones and brain function have mostly been envisioned within the framework of endocrine mechanisms as responses elicited by secretory products of steroidogenic endocrine glands, borne by the blood stream, and exerting actions on the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuxe K, Gustafsson JA, eds. Wetterberg L. Steroid Hormone Regulation of the Brain, Pergamon, Oxford, UK, 1981.

    Google Scholar 

  2. McEwen BS. Steroid hormones are multifunctional messengers to the brain. Trends Endocrinol Metab 1991; 2: 62–67.

    Article  PubMed  CAS  Google Scholar 

  3. Naftolin F, Ryan KJ, Davies IJ, Reddy VV, Flores F, Petro Z, Kuhn M, White RJ, Takaoka Y, Wolin L. The transformation of estrogens by central neuroendocrine tissues. Recent Progr Horm Res 1975; 31: 295–319.

    PubMed  CAS  Google Scholar 

  4. Celotti F, Melcangi RC, Martini U. The 5a-reductase in the brain: molecular aspects and relation to brain function. Frontiers Neuroendocrinol 1992; 13: 163–215.

    CAS  Google Scholar 

  5. Mac Lusky NJ, Philip A, Hurlburt C, Naftolin F. Estrogen metabolism in neuroendocrine structures. In: Celotti F, Naftolin F, Martini L, eds. Metabolism of Hormonal Steroids in the Neuroendocrine Structures. Raven, New York, 1984, pp. 103–116.

    Google Scholar 

  6. Cheng YJ, Karavolas HJ. Conversion of progesterone to 5a-pregnane-3,20-dione and 3a-hydroxy5a-pregnan-20-one by rat medial basal hypothalami and the effects of estradiol and stage of estrous cycle on the conversion. Endocrinology 1973; 93: 1157–1162.

    Article  PubMed  CAS  Google Scholar 

  7. Robel P, Akwa Y, Corpechot C, Hu ZY, Jung-Testas I, Kabbadj K, Le Goascogne C, Morfin R, Vourc’h C, Young J, Baulieu EE. Neurosteroids: Biosynthesis and function of pregnenolone and dehydroepiandrosterone in the brain. In: Motta M, ed. Brain Endocrinology. Raven, New York, 1991, pp. 105–131.

    Google Scholar 

  8. Baulieu EE. Steroid hormones in the brain: several mechanisms? In: Fuxe K, Gustafsson JA, Wetterberg L, eds. Steroid Hormones Regulation of the Brain. Pergamon Press, Oxford, UK, 1981, pp. 3–14.

    Google Scholar 

  9. Baulieu EE. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Rec Prog Horm Res 1997; 52: 1–32.

    PubMed  CAS  Google Scholar 

  10. Corpechot C, Robel P, Axelson M, Sjövall J, Baulieu EE. Characterization and measurement of dehydroepiandrosterone sulfate in the rat brain. Proc Natl Acad Sci USA 1981; 78: 4704–4707.

    Article  PubMed  CAS  Google Scholar 

  11. Corpechot C, Synguelakis M, Tahla S, Axelson M, Sjövall J, Vihko R, Baulieu EE, Robel P. Pregnenolone and its sulfate ester in the rat brain. Brain Res 1983; 270: 119–125.

    Article  PubMed  CAS  Google Scholar 

  12. Young J, Corpechot C, Haug M, Gobaille S, Baulieu EE, Robel P. Suppressive effects of dehydroepiandrosterone and 3 3-methyl-androst-5-en-17-one on attack towards lactating female intruders by castrated male mice. II Brain neurosteroids. Biochem Biophys Res Commun 1991; 174: 892–897.

    Article  PubMed  CAS  Google Scholar 

  13. Corpechot C, Young J, Calvel M, Wehrey C, Veltz JN, Touyer G, Mouren M, Prasad VVK, Banner C, Sjövall J, Baulieu EE, Robel P. Neurosteroids: 3a-hydroxy-5a-pregnan-20-one and its precursors in the brain, plasma and steroidogenic glands of male and female rats. Endocrinology 1993; 133: 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  14. Bixo M, Backström T, Winblad B, Selstam G, Andersson A. Comparison between pre-and postovulatory distributions of oestradiol and progesterone in the brain of the PMSG treated rat. Acta Physiol Scand 1986; 128: 241–246.

    Article  PubMed  CAS  Google Scholar 

  15. Fajar AB, Holzbauer M, Newport HM. The contribution of the adrenal gland to the total amount of progesterone produced in the female rat. J Physiol 1971; 214: 115–126.

    Google Scholar 

  16. Cheney DL, Uzunov D, Costa B, Guidotti A. Gas chromatographic mass fragmentographic quantitation of 3a-hydroxy-5a-pregnan 20-one (allopregnanolone) and its precursors in blood and brain of adrenalectomized castrated rats. J Neurosci 1995; 15: 4641–4650.

    PubMed  CAS  Google Scholar 

  17. Koenig HL, Schumacher M, Ferzaz B, Do Thi A, Ressouches A, Guennoun R, Jung-Testas I, Robel P, Akwa Y, Baulieu EE. Progesterone synthesis and myelin formation by Schwann cells. Science 1995; 268: 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  18. Young J, Corpechot C, Perché F, Haug M, Baulieu EE, Robel P. Neurosteroids: pharmacological effects of a 313-hydroxy-steroid dehydrogenase inhibitor. Endocrine 1994; 2: 505–509.

    CAS  Google Scholar 

  19. Mellon SH, Compagnon NA. Molecular biology and developmental regulation of the enzymes involved in the biosynthesis, and metabolism of neurosteroids. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology Series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. 27–50.

    Google Scholar 

  20. Poletti A, Celotti F, Maggi R, Melcangi RC, Martini L, Negri-Cesi P. Aspects of hormonal steroid metabolism in the nervous sytem. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology Series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. 97–124.

    Google Scholar 

  21. Majewska MD. Neurosteroids: endogenous bimodal modulators of the GABAA receptor: Mechanism of action and physiological significance. Prog Neurobiol 1992; 38: 379–395.

    Article  PubMed  CAS  Google Scholar 

  22. Paul SM, Purdy RH. Neuroactive steroids. FASEB J 1992; 6: 2311–2322.

    PubMed  CAS  Google Scholar 

  23. Robel P, Baulieu EE. Neurosteroids: Biosynthesis and function. Trends Endocrinol Metab 1994; 5: 1–8.

    Article  PubMed  CAS  Google Scholar 

  24. Lambert J, Belelli D, Shepherd SE, Pistis M, Peters JA. The selective interaction of neurosteroids with the GABAA receptor. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. 125–142.

    Google Scholar 

  25. Purdy RH, Moore PH Jr, Rao PN, Hagino N, Yamaguchi T, Schmidt P, Rubinow DR, Morrow AL, Paul SM. Radioimmunossay of 3a-hydroxy-5a-pregnan-20-one in rat and human plasma. Steroids 1990; 55: 290–296.

    Article  PubMed  CAS  Google Scholar 

  26. Uzunov DP, Cooper TB, Costa E, Guidotti A. Fluoxetine elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Nati Acad Sci USA 1996;93: 12, 599–12, 604.

    Google Scholar 

  27. Purdy RH, Morrow AL, Moore PH Jr, Paul S. Stress-induced elevations of gamma aminobutyric type A receptor-active steroids in the rat brain. Proc Natl Acad Sci USA 1991; 88: 4553–4557.

    Article  PubMed  CAS  Google Scholar 

  28. Young J, Corpechot C, Perch F, Eychenne B, Haug M, Baulieu EE, Robel P. Neurosteroids in the mouse brain: Behavioral and pharmacological effects of a 3(3-hydroxy steroid dehydrogenase inhibitor. Steroids 1996; 61: 144–149.

    Article  PubMed  CAS  Google Scholar 

  29. Robel P, Corpechot C, Clarke C, Groyer A, Synguelakis M, Vourc’h C, Baulieu EE. Neurosteroids: 313-Hydroxy-45-derivatives in the rat brain. In: Fink G, Harmar AJ, McKerns KW, eds. Neuroendocrine Molecular Biology. Plenum Press, New York, 1986, pp. 367–377.

    Chapter  Google Scholar 

  30. Baulieu EE, Robel P, Vatier O, Haug M, Le Goascogne C, Bourreau E. Neurosteroids: Pregnenolone and déhydroépiandrosterone in the brain. In: Fuxe K, Agnati F, eds. Receptor-Receptor Interactions. Macmillan, Basingstoke, UK 1987, pp. 89–104.

    Chapter  Google Scholar 

  31. Synguelakis M, Halberg F, Baulieu EE, Robel P. Evolution circadienne de D5–3b-hydroxystéroïdes et de glucocorticostéroïdes dans le plasma et le cerveau de rat. CR Acad Sci Paris 1985; 301: 823–826.

    CAS  Google Scholar 

  32. Robel P, Synguelakis M, Halberg F, Baulieu EE. Persistance d’un rythme circadien de la dehydroepiandrosterone dans le cerveau, mais non dans le plasma, de rats castrés et adrénalectomisés. CR Acad Sci Paris 1986; 303: 235–238.

    CAS  Google Scholar 

  33. Jo DH, Sanchez de la Pena S, Halberg F, Ungar F, Baulieu EE, Robel P, Circadian infradian rhythmic variation of brain neurosteroids in the female rat. Prog Clin Biol Res 1990; 341B: 125–134.

    Google Scholar 

  34. Corpéchot C, Collins BE, Carey MP, Tzouros T, Robel P, Fry JP. Brain neurosteroids during the mouse estrous cycle. Brain Res 1997; 766: 276–280.

    Article  PubMed  Google Scholar 

  35. Lanthier A, Patwardhan VV. Effect of heterosexual olfactory and visual stimulation on 5a-en-313hydroxysteroids and progesterone in the male rat brain. J Steroid Biochem 1987; 28: 697–701.

    Article  PubMed  CAS  Google Scholar 

  36. Barbaccia ML, Roscetti G, Trabucchi M, Cuccheddu T, Concas A, Biggio G. Neurosteroids in the brain of handling habituated and naive rats: effect of CO2 inhalation. Eur J Pharmacol 1994; 261: 317–320.

    Article  PubMed  CAS  Google Scholar 

  37. Barbaccia ML, Roscetti G, Trabucchi M, Purdy RH, Mostallino MC, Concas A, Biggio G. The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol 1997; 120: 1582–1588.

    Article  PubMed  CAS  Google Scholar 

  38. Andersson S, Crönholm F, Sjövall J. Redox effects of ethanol on steroid metabolism. Alcohol Clin Exper Res 1986; 10: 555–615.

    Article  Google Scholar 

  39. Robel P, Bourreau E, Corpéchot C, Dang DC, Halberg F, Clarke C, Haug M, Schlegel ML, Synguelakis M, Vourc’h C, Baulieu EE. Neurosteroids: 313-hydroxy-A5-derivatives in rat and monkey brain. J Steroid Biochem 1987; 27: 649–655.

    Article  PubMed  CAS  Google Scholar 

  40. Knapstein P, David A, Wu CH, Archer DF, Flickinger GL, Touchstone JC. Metabolism of free and sulfoconjugated DHEA in brain tissue in vivo and in vitro. Steroids 1968; 11: 885–896.

    Article  PubMed  CAS  Google Scholar 

  41. Lanthier A, Patwardhan VV. Sex steroids and 5-en-3(3- hydroxysteroids in specific regions of the human brain and cranial nerves. J Steroid Biochem 1986; 25: 445–449.

    Article  PubMed  CAS  Google Scholar 

  42. Lacroix C, Fiet J, Benais JP, Gueux B, Bonete R, Villette JM, Gourmel B, Dreux C. Simultaneous radioimmunoassay of progesterone, androst-4-enedione, pregnenolone, dehydroepiandrosterone and 17-hydroxy progesterone in specific regions of human brain. J Steroid Biochem 1987; 28: 317–325.

    Article  PubMed  CAS  Google Scholar 

  43. Le Goascogne C, Gouézou M, Robel P, Defaye G, Chambaz E, Waterman MR, Baulieu EE. The cholesterol side-chain cleavage complex in human brain white matter. J Neuroendocrinol 1989; 1: 153–156.

    Article  PubMed  CAS  Google Scholar 

  44. Bixo M, Andersson A, Winblad B, Purdy RH, Backström T. Progesterone, 5a-pregnane-3, 20-dione and 3a-hydroxy-5a-pregnan-20-one in specific regions of the human female brain in different endocrine states. Brain Res 1997; 764: 173–178.

    Article  PubMed  CAS  Google Scholar 

  45. Jung-Testas I, Hu ZY, Robel P, Baulieu EE. Biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology 1989; 125: 2003–2091.

    Google Scholar 

  46. Guarneri P, Papadopoulos V, Pan B, Costa E. Regulation of pregnenolone synthesis in C6–2B glioma cells by 4’-chlorodiazepam. Proc Nati Acad Sci USA 1992; 89: 5118–5122.

    Article  CAS  Google Scholar 

  47. Roscetti G, Ambrosio C, Trabucchi M, Massotti M, Barbaccia ML. Modulatory mechanisms of cyclic AMP-stimulated steroid content in rat brain cortex. Eur J Pharmacol 1994; 269: 17–24.

    Article  PubMed  CAS  Google Scholar 

  48. Papadopoulos V, Guarneri P. Regulation of C6 glioma cell steroidogenesis by adenosine -3’,5’ cyclic monophosphate. Glia 1994; 10: 75–78.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang O, Rodriguez H, Mellon SH. Transcriptional regulation of P45O„, gene expression in neural and steroidogenic cells: implications for regulation of neurosteroidogenesis. Mol Endocrinol 1995; 9: 1571–1582.

    Article  PubMed  CAS  Google Scholar 

  50. Guarneri P, Guarneri R, Cascio C, Pavasant P, Piccoli F, Papadopoulos V. Neurosteroidogenesis in rat retinas. J Neurochem 1994; 63: 83–96.

    Google Scholar 

  51. Guarneri P, Guarneri R, Cascio C, Piccoli F, Papadopoulos V. Gamma-aminobutyric acid type A/benzodiazepine receptors regulate rat retina neurosteroidogenesis. Brain Res 1995; 683: 65–72.

    Article  PubMed  CAS  Google Scholar 

  52. Barbaccia ML, Roscetti G, Trabucchi M, Purdy RH, Mostallino MC, Puva C, Concas A, Biggio G. Isoniazid-induced inhibition of GABAergic transmission enhances neurosteroid content in the rat brain. Neuropharmacology 1996; 35: 1299–1305.

    Article  PubMed  CAS  Google Scholar 

  53. Warner M, Gustafsson JA. Cytochrome P450 in the central nervous system. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology Series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. xxx-xxx.

    Google Scholar 

  54. Hu ZY, Bourreau E, Jung-Testas I, Robel P, Baulieu EE. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci USA 1987; 84: 8215–8219.

    Article  PubMed  CAS  Google Scholar 

  55. Le Goascogne C, Robel P, Gouézou M, Sananès N, Baulieu EE, Waterman M. Neurosteroids: Cytochrome P450sCC in rat brain. Science 1987; 237: 1212–1215.

    Article  PubMed  Google Scholar 

  56. Mellon SH, Deschepper CF. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993; 629: 283–292.

    Article  PubMed  CAS  Google Scholar 

  57. Strömstedt M, Waterman MR. Messenger RNA encoding steroidogenic enzymes are expressed in rodent brain. Mol Brain Res 1995; 4: 75–88.

    Article  Google Scholar 

  58. Sanne JL, Krueger KE. Expression of cytochrome P450 side-chain cleavage enzyme and 313-hydroxy-steroid dehydrogenase in the rat central nervous system: A study by polymerase chain reaction and in situ hybridization. J Neurochem 1995; 65: 528–536.

    Article  PubMed  CAS  Google Scholar 

  59. Le Goascogne C, Sananès N, Gouézou M, Takemori S, Kominami S, Baulieu EE, Robel P. Immunoreactive cytochrome P45017a in rat and guinea-pig gonads, adrenal glands and brain. J Reprod Fertil 1991; 93: 609–622.

    Article  PubMed  Google Scholar 

  60. Compagnone NA, Bulfone A, Rubenstein JLR, Mellon SH. Steroidogenic enzyme P450c17 is expressed in the embryonic central nervous system. Endocrinology 1995; 136: 5212–5223.

    Article  PubMed  CAS  Google Scholar 

  61. Baulieu EE, Robel P. Dehydroepiandrosterone and dehydroepiandrosterone sulfate as neuroactive steroids. J Endocrinol 1996; 150: 5221–5239.

    Google Scholar 

  62. Prasad VVK, Vegesna SR, Welch M, Lieberman S. Precursors of the neurosteroids. Proc Natl Acad Sci USA 1994; 91: 3220–3223.

    Article  PubMed  CAS  Google Scholar 

  63. Cascio C, Prasad VVK, Lin YY, Lieberman S, Papadopoulos V. Detection of P450c17-independent pathways for dehydroepiandrosterone (DHEA) biosynthesis in brain glial tumor cells. Proc Natl Acad Sci USA 1998; 95: 2862–2867.

    Article  PubMed  CAS  Google Scholar 

  64. Kishimoto Y, Hoshi M. Dehydroepiandrosterone sulphate in rat brain: Incorporation from blood and metabolism in vivo. J Neurochem 1972; 19: 2207–2215.

    Article  PubMed  CAS  Google Scholar 

  65. Mathur C, Prasad VVK, Raju VS, Welch M, Lieberman S. Steroids and their conjugates in the mammalian brain. Proc Natl Acad Sci USA 1993; 90: 85–88.

    Article  PubMed  CAS  Google Scholar 

  66. Hobkirk R. Steroid sulfation. Current concepts. Trends Endocrinol Metab 1993; 4: 69–74.

    Article  PubMed  CAS  Google Scholar 

  67. Rajkowski K, Robel P, Baulieu EE. Hydroxysteroid sulfotransferase activity in the rat brain and liver as a function of age and sex. Steroids 1997; 62: 427–436.

    Article  PubMed  CAS  Google Scholar 

  68. Strott CA. Steroid sulfotransferases. Endocrine Rev 1996; 17: 670–696.

    CAS  Google Scholar 

  69. Hobkirk R. Steroid sulfotransferases and steroid sulfate sulfatases: Characteristics and biological roles. Can J Biochem Cell Biol 1985; 63: 1127–1144.

    Google Scholar 

  70. Li XM, Salido EC, Goug Y, Kitada K, Serikawa T, Yen PH, Shapiro LJ. Cloning of the rat steroid sulfatase gene (Sts), a non-pseudoautosomal X-linked gene that undergoes X inactivation. Mamm Genome 1996; 7: 420–424.

    Article  PubMed  CAS  Google Scholar 

  71. Salido EC, Li XM, Yen PH, Martin N, Mohandas TK, Shapiro J. Cloning and expression of the mouse pseudoautosomal steroid sulphatase gene (Sts). Nat Genet 1996; 13: 83–86.

    Article  PubMed  CAS  Google Scholar 

  72. Compagnone NA, Salido E, Shapiro I, Mellon SA. Expression of steroid sulfatase during embryo-genesis. Endocrinology 1997; 138: 4768–4773.

    Article  PubMed  CAS  Google Scholar 

  73. Rhodes ME, Li PK, Burke AM, Johnson DA. Enhanced plasma DHEAS, brain acetylcholine and memory mediated by steroid sulfatase inhibition. Brain Res 1997; 773: 28–32.

    Article  PubMed  CAS  Google Scholar 

  74. Vourc’h C, Eychenne B, Jo DH, Raulin J, Lapous D, Baulieu EE, Robel P. 45–313-hydroxysteroids acyl transferase activity in the rat brain. Steroids 1992; 57: 210–215.

    Article  PubMed  Google Scholar 

  75. Weindenfeld J, Siegel RA, Chowers I. In vitro conversion of pregnenolone to progesterone by discrete areas of the male rat. J Steroid Biochem 1980; 13: 961–963.

    Article  Google Scholar 

  76. Bauer HC, Bauer H. Micromethod for the determination of 3-beta-HSD activity in cultured cells. J Steroid Biochem 1989; 33: 643–646.

    Article  PubMed  CAS  Google Scholar 

  77. Kabbadj K, El Etr M, Baulieu EE, Robel P. Pregnenolone metabolism in rodent embryonic neurons and astrocytes. Glia 1993; 7: 170–175.

    Article  PubMed  CAS  Google Scholar 

  78. Pelletier G, Dupont E, Simard J, Luu-The V, Bélanger A, Labrie F. Ontogeny and subcellular localization of 3(3-hydroxysteroid dehydrogenase (3(3-HSD) in the human and rat adrenal, ovary and testis. J Steroid Biochem Mol Biol 1992; 43: 451–467.

    Article  PubMed  CAS  Google Scholar 

  79. Guennoun R, Fiddes RJ, Gouézou M, Lombès M, Baulieu EE. A key enzyme in the biosynthesis of neurosteroids, 3(3-hydroxysteroid dehydrogenase/A5–44-isomerase (3ß -HSD), is expressed in rat brain. Mol Brain Res 1995; 30: 287–300.

    Article  PubMed  CAS  Google Scholar 

  80. Guennoun R, Schumacher M, Robert F, Delespierre B, Gouézou M, Eychenne B, Akwa Y, Robel P, Baulieu EE. Neurosteroids: Expression of functional 3(3-hydroxysteroid dehydrogenase by rat sensory neurons and Schwann cells. Eur J Neurosci 1997; 9: 2236–2247.

    Article  PubMed  CAS  Google Scholar 

  81. Akwa Y, Sananès N, Gouézou M, Robel P, Baulieu EE, Le Goascogne C. Astrocytes and neurosteroids: metabolism of pregnenolone and dehydroepiandrosterone. Regulation by cell density. J Cell Biol 1993; 121: 135–143.

    Article  PubMed  CAS  Google Scholar 

  82. Young J, Corpechot C, Perché F, Haug M, Baulieu EE, Robel P. Neurosteroids: Pharmacological effects of a 3(3-hydroxysteroid dehydrogenase inhibitor. Endocrine 1994; 2: 505–509.

    CAS  Google Scholar 

  83. Akwa Y, Morfin RF, Robel P, Baulieu EE. Neurosteroid metabolism. 7a-Hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem J 1992; 288: 954–964.

    Google Scholar 

  84. Doostzadeh J, Morfin R. Studies of the enzyme complex responsible for pregnenolone and dehydroepiandrosterone 7a-hydroxylation in mouse tissues. Steroids 1996; 61: 613–620.

    Article  PubMed  CAS  Google Scholar 

  85. Warner M, Strömstedt M, Möller L, Gustafsson JA. Distribution and regulation of 5a-androstane-3(3,1713-diol hydroxylase in the rat central nervous system. Endocrinology 1989; 124: 2699–2706.

    Article  PubMed  CAS  Google Scholar 

  86. Zhang J, Akwa Y, Baulieu EE, Sjövall J. 7a-hydroxylation of 27-hydroxycholesterol in rat brain microsomes. CR Acad Sci Paris 1995; 318: 345–349.

    CAS  Google Scholar 

  87. Stapleton G, Steel M, Richardson M, Mason JO, Rose KA, Morris RGM, Lathe R. A novel cytochrome P450 expressed primarily in brain. J Biol Chem 1995;270:29, 739–29, 745.

    Google Scholar 

  88. Rose KA, Stapleton G, Dott K, Kieny MP, Best R, Schwarz M, Russell DW, Björkhem I, Seckl J, Lathe R.Cyp 7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7a-hydroxy dehydroepiandrosterone and 7a-hydroxy pregnenolone. Proc Natl Acad Sci USA 1997; 94: 4925–4930.

    Article  PubMed  CAS  Google Scholar 

  89. Strömstedt M, Warner M, Banner CD, Macdonald PC, Gustafsson JA. Role of brain cytochrome P450 in regulation of the level of anesthetic steroids in the brain. Mol Pharmacol 1993; 44: 1077–1083.

    PubMed  Google Scholar 

  90. Morfin R, Courchay G. Pregnenolone and dehydroepiandrosterone as precursors of native 7-hydroxylated metabolites which increase the immune response in mice. J Steroid Biochem Mol Biol 1994; 50: 91–100.

    Article  PubMed  CAS  Google Scholar 

  91. Padgett DA, Loria RM. In vitro potentiation of lymphocyte activation by dehydroepiandrosterone, androstenediol, and androstenetriol. J Immunol 1994; 153: 1544–1552.

    PubMed  CAS  Google Scholar 

  92. Doostzadeh J, Flinois JP, Beaune P, Morfin R. Pregnenolone 7(3-hydroxylating activity of human cytochrome P450–1A1. J Ster Biochem Mol Biol 1997; 60: 147–152.

    Article  CAS  Google Scholar 

  93. Hu ZY, Bourreau E, Jung-Testas I, Robel P, Baulieu EE. Neurosteroids: steroidogenesis in primary cultures of rat glial cells after release of aminoglutethimide blockade. Biochem Biophys Res Commun 1989; 161: 917–922.

    Article  PubMed  CAS  Google Scholar 

  94. Mao J, Duan WR, Albarrain CT, Parrner TG, Gibori G. Isolation and characterization of a rat luteal cDNA encoding 20a-hydroxysteroid dehydrogenase. Biochem Biophys Res Commun 1994; 201: 1289–1295.

    Article  PubMed  CAS  Google Scholar 

  95. Cheng KC, Lee J, Khanna M, Qin K-N. Distribution and ontogeny of 3a-hydroxysteroid dehydrogenase in the rat brain. J Steroid Biochem Mol Biol 1994; 50: 85–89.

    Article  PubMed  CAS  Google Scholar 

  96. Li X, Bertics PJ, Karavolas HJ. Regional distribution of cytosolic and particulate 5a-dihydroprogesterone 3a-hydroxysteroid oxidoreductases in female rat brain. J Steroid Biochem Mol Biol 1997; 60: 311–318.

    Article  PubMed  CAS  Google Scholar 

  97. Majewska MD. Neurosteroid antagonists of the GABAA receptors. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. 155–166.

    Google Scholar 

  98. Gibbs TT, Yaghoubi N, Weaver CE Jr., Park-Chung M, Russek S, Farb DH. Modulation of ionotropic glutamate receptors by neuroactive steroids. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. 167–190.

    Google Scholar 

  99. Bastianetto S, Monnet F, Junien JL, Quirion R. Steroidal modulation of sigma receptor function. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. 191–205.

    Google Scholar 

  100. French-Mullen JMH. Neuroactive steroid modulation of neuronal voltage-gated calcium channels. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. 225–232.

    Google Scholar 

  101. Haug M. Phénomène d’agression lié à l’introduction d’une femelle étrangère vierge ou allaitante au sein d’un groupe de souris femelles. CR Acad Sci Paris 1972; 275: 2729–2732.

    CAS  Google Scholar 

  102. Haug M, Brain PF. Attack directed by groups of castrated male mice towards lactating or no lactating intruders: a urine dependent phenomenon. Physiol Behav 1978; 21: 549–552.

    Article  PubMed  CAS  Google Scholar 

  103. Haug M, Brain PF. Attack directed by groups of gonadectomized male and female mice towards lactating intruders. Physiol Behav 1979; 23: 397–400.

    Article  PubMed  CAS  Google Scholar 

  104. Haug M, Brain PF. The effects of differential housing, castration, and steroidal hormone replacement on attacks directed by resident mice towards lactating intruders. Physiol Behav 1983; 30: 557–560.

    Article  PubMed  CAS  Google Scholar 

  105. Schlegel ML, Spetz JF, Robel P, Haug M. Studies on the effects of dehydrepiandrosterone and its metabolites on attack by castrated mice on lactating intruders. Physiol Behav 1985; 34: 867–870.

    Article  PubMed  CAS  Google Scholar 

  106. Parker CR, Mahesh VB. Dehydroepiandrosterone induced precocious ovulation: Correlative changes in blood steroids, gonadotropins, and cytosol estradiol receptors of anterior pituitary gland and hypothalamus. J Steroid Biochem 1977; 8: 173–177.

    Article  PubMed  CAS  Google Scholar 

  107. Haug M, Schlegel ML, Spetz JF, Brain PF, Simon V, Baulieu EE, Robel P. Suppressive effect of dehydroepiandrosterone and 313-methyl androst-5-en-17-one on attack towards lactating female intruders by castrated male mice. Physiol Behav 1988; 46: 955–959.

    Article  Google Scholar 

  108. Robel P, Young J, Corpéchot C, Mayo W, Perché F, Haug M, Simon H, Baulieu EE. Biosynthesis and assay of neurosteroids in rats and mice: functional correlates. J Steroid Biochem Mol Biol 1995, 53: 355–360.

    Article  PubMed  CAS  Google Scholar 

  109. Haug M, Brain PF, Kamis AB. A brief review comparing the effects of sex steroids on two forms of agression in laboratory mice. Neurosci Biobehav Rev 1986; 10: 463–468.

    Article  PubMed  CAS  Google Scholar 

  110. Haug M, Young J, Robel P, Baulieu EE. L’inhibition par la déhydroépiandrostérone des réponses agressives de souris femelles castrées vis-à-vis d’intruses allaitantes est potentialisée par l’androgénisation néonatale. CR Acad Sci Paris 1991; 312: 511–516.

    CAS  Google Scholar 

  111. Mayo W, Vallée M, Darnaudéry M, Le Moal M. Neurosteroids: behavioral studies. In: Baulieu EE, Robel P, Schumacher M, eds. Contemporary Endocrinology series. Neurosteroids: A New Regulatory Function in the Nervous System. Humana Press, Totowa, NJ, 1999, pp. 317–335.

    Google Scholar 

  112. Flood JF, Roberts E. Dehydroepiandrosterone sulfate improves memory in aging mice. Brain Res 1998; 448: 178–181.

    Article  Google Scholar 

  113. Vallée M, Mayo W, Darnaudéry M, Corpéchot C, Young J, Koehl M, Le Moal M, Baulieu EE, Robel P, Simon H. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci USA 1997;94:14, 865–14, 870.

    Google Scholar 

  114. Bologa L, Sharma J, Roberts E. Dehydroepiandrosterone and its sulfated derivative reduce neuronal death and enhance astrocytic differentiation in brain cell cultures. J Neurosci Res 1987; 17: 225–234.

    Article  PubMed  CAS  Google Scholar 

  115. Del Cerro S, Garcia-Estrada J, Garcia-Segura LM. Neuroactive steroids regulate astroglia morphology in hippocampal cultures from adult rats. Glia 1995; 14: 65–71.

    Article  PubMed  Google Scholar 

  116. Garcia-Estrada J, Del Rio JA, Luquin S, Soriano E, Garcia-Segura LM. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after penetrating brain injury. Brain Res 1993; 628: 271–278.

    Article  PubMed  CAS  Google Scholar 

  117. Guth L, Zhang Z, Roberts E. Key role for pregnenolone in combination therapy promotes recovery after spinal cord injury. Proc Natl Acad Sci USA 1994;91:12, 308–12, 312.

    Google Scholar 

  118. Yu WH. Survival of motoneurons following axotomy is enhanced by lactation or by progesterone treatment. Brain Res 1989; 491: 379–382.

    Article  PubMed  CAS  Google Scholar 

  119. Roof RL, Duvdevani R, Stein DG. Gender influences outcome of brain injury-Progesterone plays a protective role. Brain Res 1993; 607: 333–336.

    Article  PubMed  CAS  Google Scholar 

  120. Warembourg M, Otten U, Schwab ME. Labelling of Schwann and satellite cells by [3H] dexamethasone in a rat sympathetic ganglion and sciatic nerve. Neuroscience 1981; 6: 1139–1143.

    Article  CAS  Google Scholar 

  121. Jung-Testas I, Schumacher M, Robel P, Baulieu EE. Demonstration of progesterone receptors in rat Schwann cells. J Steroid Biochem Mol Biol 1996; 58: 77–82.

    Article  PubMed  CAS  Google Scholar 

  122. Jung-Testas I, Schumacher M, Bugnard H, Baulieu EE. Stimulation of rat Schwann cell proliferation by estradiol: synergism between the estrogen and cAMP. Dev Brain Res 1993; 72: 282–290.

    Article  CAS  Google Scholar 

  123. Jay JR, MacLaughlin DT, Badger TM, Miller DC, Martuza RL. Hormonal modulation of Schwann cell tumors. Ann NY Acad Sci 1986; 486: 371–382.

    Article  PubMed  CAS  Google Scholar 

  124. Neuberger TJ, Kalimi O, Regelson W, Kalimi M, De Vries GH. Glucocorticoids enhance the potency of Schwann cell mitogens. J Neurosci Res 1994; 38: 300–313.

    Article  PubMed  CAS  Google Scholar 

  125. Désarnaud F, Do Thi AN, Brown A, Lemke G, Suter U, Baulieu EE, Schumacher M. Progesterone stimulates the activity of the promoters of peripheral myelin protein-22 and PO genes in Schwann cells. J Neurochem 1998; 71: 1765–1768.

    Article  PubMed  Google Scholar 

  126. Kumar S, Cole R, Chiappelli F, de Vellis J. Differential regulation of oligodendrocyte markers by glucocorticoids: post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase. Proc Natl Acad Sci USA 1989; 86: 6807–6811.

    Article  PubMed  CAS  Google Scholar 

  127. Warringa RAJ, Hoeben RC, Koper JW, Sykes JEC, Van Golde LMG, Lopes-Cardozo M. Hydrocortisone stimulates the development of oligodendrocytes in primary glial cultures and affects glucose metabolism and lipid synthesis in these cultures. Dev Brain Res 1987; 34: 79–86.

    Article  CAS  Google Scholar 

  128. Pavelko KD, van Engelen BGM., Rodriguez M. Acceleration in the rate of CNS remyelination in Iysolecithin-induced demyelination. J Neurosci 1998; 18: 2498–2505.

    PubMed  CAS  Google Scholar 

  129. Chan JR, Phillips LJ, Glaser M. Glucocorticoids and progestins signal the initiation and enhance the rate of myelin formation. Proc Natl Acad Sci USA 1998;95:10, 459–10, 464.

    Google Scholar 

  130. Fawcett JW, Keynes RJ. Peripheral nerve regeneration. Annu Rev Neurosci 1990; 13: 43–60.

    Article  PubMed  CAS  Google Scholar 

  131. Jung-Testas I, Schumacher M, Robel P, Baulieu EE. Actions of steroid hormones and growth factors on glial cells of the central and peripheral nervous system. J Steroid Biochem Mol Biol 1994; 48: 145–154.

    Article  PubMed  CAS  Google Scholar 

  132. Suter U, Snipes GJ. Biology and genetics of hereditary motor and sensory neuropathies. Ann Rev Neurosci 1998; 18: 45–75.

    Article  Google Scholar 

  133. Celotti F, Melcangi RC, Martini L. The 5a-reductase in the brain: molecular aspects and relation to brain function. Front Neuroendocrinol 1992; 13: 163–215.

    PubMed  CAS  Google Scholar 

  134. Melcangi RC, Magnagi V, Cavarretta L, Martini L, Piva F. Age-induced decrease of glycoprotein PO and myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives. Neuroscience 1998; 85: 569–578.

    Article  PubMed  CAS  Google Scholar 

  135. Rupprecht R, Reul JMHM, Trapp T, Van Steensel B, Wetzel C, Damm K, Ziegelgänsberger W, Holsboer F. Progesterone receptor-mediated effects of neuroactive steroids. Neuron 1993; 11: 523–530.

    Article  PubMed  CAS  Google Scholar 

  136. Lemke G. The molecular genetics of myelination: An update. Glia 1993; 7: 263–271.

    Article  PubMed  CAS  Google Scholar 

  137. Jung-Testas I, Renoir JM, Gasc JM, Baulieu EE. Estrogen-inducible progesterone receptor in primary cultures of rat glial cells. Exp Cell Res 1991; 193: 12–19.

    Article  PubMed  CAS  Google Scholar 

  138. Jung-Testas I, Schumacher M, Robel P, Baulieu EE. The neurosteroid progesterone increases the expression of myelin proteins (MBP and CNPase) in rat oligodendrocytes in primary culture. Cell Mol Neurobiol 1996; 16: 439–443.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robel, P., Schumacher, M., Baulieu, EE. (1999). Neurosteroids: From Definition and Biochemistry to Physiopathologic Function. In: Baulieu, EE., Robel, P., Schumacher, M. (eds) Neurosteroids. Contemporary Endocrinology, vol 16. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-693-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-693-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-068-7

  • Online ISBN: 978-1-59259-693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics