Skip to main content

Electrospray Mass Spectrometric Analysis of Lipid Mediators Derived from Arachidonic Containing Membrane Phospholipids

  • Chapter
Mass Spectrometry in Biology & Medicine

Abstract

Arachidonic acid (5,8,11,14(Z,Z,Z,Z)- eicosatetraenoic acid) is one of the most common polyunsaturated fatty acids present within virtually all mammalian cells. Arachidonic acid plays an important role in biological chemistry because of its unique physical properties such as influencing membrane fluidity as well as serving as a source of a diverse family of oxidized metabolites known to play important physiological and pathophysiological roles within tissues. Even though a very small percentage of the total arachidonic acid within cells is ever involved in the oxidative reactions that lead to the formation of compounds such as prostaglandins [1] and leukotrienes [2], a considerable amount of effort has been placed in designing agents that either inhibit production of these molecules or block their actions. Prostaglandins and leukotrienes exert their biological activity through G-protein linked membrane receptors on the surface of cells, and these specific receptors are linked to numerous signal transduction processes, which lead to a myriad of biological responses mediated by these lipid products. The enzymes that form these lipid mediators utilize arachidonic acid only as a free carboxylic acid, and do not act on arachidonic acid while it is esterified to membrane phospholipids. This is rather curious because the majority of all arachidonate within cells exists in the plasma and organelle membranes in various phospholipid classes esterified to the sn-2 position [3]. The other curious feature of the enzymes responsible for the initial oxidation of arachidonic acid involves the formation of free radical intermediates which can readily react with molecular oxygen. The enzymes cyclooxygenase, 5-lipoxygenase, 15-lipoxygenase, and 12-lipoxygenase utilize iron in various bound forms in the active site to initiate these free radical reactions. Within the active site, the chemical reactivity of these radical species is controlled, resulting in a stereospecific reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Smith, Am. J. Physiol. 1992, 263, F181 - F191.

    CAS  Google Scholar 

  2. A. W. Ford-Hutchinson, M. Gresser and R. N. Young, Ann. Rev. Biochem. 1994, 63, 383–417.

    Article  CAS  Google Scholar 

  3. R. F. Irvine, Biochem. J. 1992, 204, 3–16.

    Google Scholar 

  4. N. A. Porter, S. E. Caldwell and K. A. Mills, Lipids 1995, 30, 277–290.

    Article  CAS  Google Scholar 

  5. W. A. Pryor and G. L. Squadrito, Am. J. Physiol. 1995, 268, L699 - L722.

    CAS  Google Scholar 

  6. B. A. Wagner, G. R. Buettner and C. P. Burns, Biochemistry 1994, 33, 4449–4453.

    Article  CAS  Google Scholar 

  7. M. G. Salgo, F. P. Corongiu and A. Sevanian, Arch. Biochem. Biophys. 1993, 304, 123–132.

    Article  CAS  Google Scholar 

  8. M. G. Salgo, F. P. Corongiu and A. Sevanian, Biochim. Biophys. Acta 1992, 1127, 131–140.

    Article  CAS  Google Scholar 

  9. J. D. Morrow and L. J. I. Roberts, Biochem. Pharmacol. 1996, 51, 1–9.

    Article  CAS  Google Scholar 

  10. K. A. Harrison and R. C. Murphy, J. Biol. Chem. 1995, 270, 17273–17278.

    Article  CAS  Google Scholar 

  11. T. Nakamura, D. L. Bratton and R. C. Murphy, J. Mass Spectrom. 1997

    Google Scholar 

  12. L. M. Hall and R. C. Murphy, J. Am. Soc. Mass Spectrom. 1998, 9, 527–532.

    Article  CAS  Google Scholar 

  13. R. C. Murphy, The Handbook of Lipid Research, F. Snyder, Ed.; Plenum Press: New York, 1993.

    Google Scholar 

  14. I. A. Blair, Methods Enzymol. 1990, 187, 13–23.

    Google Scholar 

  15. J. L. Kerwin and J. J. Torvik, Anal. Chem. 1997, 237, 56–64.

    Google Scholar 

  16. P. Wheelan, J. A. Zirrolli and R. C. Murphy, Biol. Mass Spectrom. 1993, 22, 465–473.

    Article  CAS  Google Scholar 

  17. K. Bernstrom, K. Kayganich, and R. C. Murphy, Anal. Biochem. 1991, 198, 203–211.

    Article  CAS  Google Scholar 

  18. D. K. MacMillan and R. C. Murphy, J. Am. Soc. Mass Spectrom. 1995, 6, 1190–1201.

    Article  CAS  Google Scholar 

  19. P. Wheelan, J. A. Zirrolli and R. C. Murphy, J. Am. Soc. Mass Spectrom. 1996, 7 129–139.

    Google Scholar 

  20. D. C. Zeldin, J. D. Plitman, J. Kobayashi, R. F. Miller, J. R. Snapper, J. R. Falck, J. L. Szarek, R. M. Philpot and J. H. Capdevila, J. Clin. Invest. 1995, 95, 2150–2160.

    Article  CAS  Google Scholar 

  21. H. G. Rose and M. Okiander, J. Lipid Res. 1965, 6, 428.

    CAS  Google Scholar 

  22. S. S. Singhal, M. Saxena, H. Ahmad, S. Awasthi, A. K. Hague and Y. C. Awasthi, Arch. Biochem. Biophys. 1992, 299, 232–241.

    Article  CAS  Google Scholar 

  23. F. Ursini, M. Maiorino and A. Roveri, Biomed. Environ. Sci. 1997, 10, 327–332.

    CAS  Google Scholar 

  24. G. M. Rosen, S. Pou, C. L. Ramos, M. S. Cohen and B. E. Britigan, FASEB J. 1995, 9, 200–209.

    Google Scholar 

  25. M. Peters-Golden, Am. J. Respir. Crit. Care Med. 1998,157 S227–S231.

    Google Scholar 

  26. W. Pruzanski, E. Stefanski, P. Vadas, B. P. Kennedy and H. van den Bosch, Biochim. Biophys. Acta 1998, 1403, 47–56.

    Article  CAS  Google Scholar 

  27. P. Wheelan and R. C. Murphy, Anal. Biochem. 1997, 244, 110–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murphy, R.C., Nakamura, T. (2000). Electrospray Mass Spectrometric Analysis of Lipid Mediators Derived from Arachidonic Containing Membrane Phospholipids. In: Burlingame, A.L., Carr, S.A., Baldwin, M.A. (eds) Mass Spectrometry in Biology & Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-719-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-719-2_25

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9829-5

  • Online ISBN: 978-1-59259-719-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics