Skip to main content

Photodynamic Therapy

  • Chapter

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Cerebral gliomas are inherently invasive tumors, and the vast majority of tumors recur locally despite optimal conventional therapies. Photodynamic therapy has been used as an adjuvant therapy to help control the tumor locally. Photodynamic therapy is a binary treatment involving the selective uptake of a sensitizer by the cancer cell followed by irradiation of the tumor to activate the retained photosensitizer, thereby causing selective tumor destruction. Laboratory investigations have confirmed the selective uptake of sensitizers as well as determining the optimal therapeutic index dose of sensitizer and irradiated light. Clinical studies have shown that when photodynamic therapy is used as an adjuvant it may have significant benefit in not only controlling local disease but also prolonging tumor-free survival.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bashir R, Hochberg F, Oot R. Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 1988;23(1):27–30.

    Article  PubMed  CAS  Google Scholar 

  2. Choucair A, Levin V, Gutin P, et al. Development of multiple lesions during radiation therapy and chemotherapy in patients with gliomas. J Neurosurg 1986;65(5):654–658.

    PubMed  CAS  Google Scholar 

  3. Kaye AH, Morstyn G, Brownbill D. Adjuvant high-dose photoradiation therapy in the treatment of cerebral glioma: a phase 1-2 study. J Neurosurg 1987;67(4):500–505.

    Article  PubMed  CAS  Google Scholar 

  4. Stylli S, Kaye A, MacGregor L, et al. Photodynamic therapy of high grade glioma-long term survival. J Clin Neurosci 2005:12(4):389–398.

    Article  PubMed  CAS  Google Scholar 

  5. Perria C, Capuzzo T, Cavagnaro G, et al. First attempts at the photodynamic treatment of human gliomas. J Neurosurg Sci 1980:24(2-4): 119–29.

    PubMed  CAS  Google Scholar 

  6. Daniell MD, Hill JS. A history of photodynamic therapy. Aust N Z J Surg 1991;61(5):340–348.

    PubMed  CAS  Google Scholar 

  7. Abernathey CD, Anderson RE, Kooistra KL, et al. Activity of phthalocyanine photosensitizers against human glioblastoma in vitro. Neurosurgery 1987;21(4):468–473.

    Article  PubMed  CAS  Google Scholar 

  8. Kaye AH, Morstyn G. Photoradiation therapy causing selective tumor kill in a rat glioma model. Neurosurgery 1987;20(3):408–415.

    Article  PubMed  CAS  Google Scholar 

  9. Christensen T, Moan J, Sandquist T, et al. Multicellular spheroids as an in vitro model system for photoradiation therapy in the presence of Hpd. Prog Clin Biol Res 1984;170:381–390.

    PubMed  CAS  Google Scholar 

  10. Kaye AH, Morstyn G, Gardner I. Development of a xenograft glioma model in mouse brain. Cancer Res 1986;46:1367–1373.

    PubMed  CAS  Google Scholar 

  11. Mitchell JB, Cook JA, Russo A. Biological basis for phototherapy. In: Morstyn KAG, ed. Phototherapy of Cancer, Harwood Academic Publishers: London, 1990;1-22.

    Google Scholar 

  12. Kessel D, Thompson P, Musselman B, et al. Probing the structure and stability of the tumor-localizing derivative of hematoporphyrin by reductive cleavage with LiAlH4. Cancer Res 1987;47(17):4642–4545.

    PubMed  CAS  Google Scholar 

  13. Berenbaum MC, Bonnett R, Scourides PA. In vivo biological activity of the components of haematoporphyrin derivative. Br J Cancer 1982;45(4):571–81.

    PubMed  CAS  Google Scholar 

  14. Kessel D. Chemistry of photosensitizing products derived from hematoporphyrin. In: Morstyn KAG, ed., Phototherapy of Cancer, Harwood Academic Publishers: London, 1990;23-35.

    Google Scholar 

  15. Kaye AH. Photoradiation therapy of brain tumours. Ciba Found Symp 1989;146:209–221; discussion 221-224.

    PubMed  CAS  Google Scholar 

  16. Kaye AH. Photodynamic therapy of cerebral tumors. Neurosurg Q 1992;1:233–358.

    Google Scholar 

  17. Hill JS, Kahl SB, Kaye AH, et al. Selective tumor uptake of a boronated porphyrin in an animal model of cerebral glioma. Proc Natl Acad Sci USA, 1992;89(5): 1785–1789.

    Article  PubMed  CAS  Google Scholar 

  18. Powers SK, Pribil S, Gillespie GY 3rd., et al. Laser photochemotherapy of rhodamine-123 sensitized human glioma cells in vitro. J Neurosurg 1986;64(6):918–923.

    PubMed  CAS  Google Scholar 

  19. Whelan HT, Traul DL, Przybylski C, et al. Interactions of merocyanine 540 with human brain tumor cells. Pediatr Neurol 1992;8(2): 117–120.

    Article  PubMed  CAS  Google Scholar 

  20. Fujishima I, Sakai T, Tanaka T, et al. Photodynamic therapy using pheophorbide and Nd: YAG laser. Neurol Med Chir (Tokyo) 1991;31(5):257–263.

    CAS  Google Scholar 

  21. Lindsay E A, Berenbaum MC, Bonnett R, et al. Photodynamic therapy of a mouse glioma: intracranial tumours are resistant while subcutaneous tumours are sensitive. Br J Cancer 1991;63(2):242–246.

    PubMed  CAS  Google Scholar 

  22. Steichen JD, Weiss MJ, Elmaleh DR, et al. Enhanced in vitro uptake and retention of 3H-tetraphenylphos-phonium by nervous system tumor cells. J Neurosurg 1991;74(1): 116–122.

    Article  PubMed  CAS  Google Scholar 

  23. Van Lier J. New sensitizers for photodynamic therapy of cancer. Photodynamic Therapy. In: Douglas MJ, Dall’eAcqua RH, eds., Light in Biology and Medicine. Plenum: New York 1988;133-140.

    Google Scholar 

  24. Butkus B. Europe Takes the Lead in Photodynamic Cancer Therapy. Biophotonics International, July 2003;40–47.

    Google Scholar 

  25. Bourre L, Simonneaux G, Ferrand Y, et al. Synthesis, and in vitro and in vivo evaluation of a diphenylchlorin sensitizer for photodynamic therapy. J Photochem Photobiol B 2003;69(3):179–192.

    Article  PubMed  CAS  Google Scholar 

  26. Benson R., Phototherapy of bladder cancer. In: Morstyn KAG, ed., Phototherapy of Cancer. Harwood Academic Publishers: London, 1990;199-214.

    Google Scholar 

  27. Woodburn KW, Vardaxis NJ, Hill JS, et al. Subcellular localization of porphyrins using confocal laser scan-ning microscopy. Photochem Photobiol 1991;54(5):725–732.

    PubMed  CAS  Google Scholar 

  28. Hill JS, Kaye AH, Sawyer WH, et al. Selective uptake of hematoporphyrin derivative into human cerebral glioma. Neurosurgery 1990;26(2):248–254.

    Article  PubMed  CAS  Google Scholar 

  29. Origitano TC, Karesh SM, Henkin RE, et al. Photodynamic therapy for intracranial neoplasms: investigations of photosensitizer uptake and distribution using indium-111 Photofrin-II single photon emission computed tomography scans in humans with intracranial neoplasms. Neurosurgery 1993;32(3):357–363; discussion 363-364.

    Article  PubMed  CAS  Google Scholar 

  30. Powers SK, Cush SS, Walstad DL, et al. Stereotactic intratumoral photodynamic therapy for recurrent malig-nant brain tumors. Neurosurgery 1991;29(5):688–695; discussion 695-696.

    Article  PubMed  CAS  Google Scholar 

  31. Rosenthal MA, Kavar B, Hill JS, et al. Phase I and pharmacokinetic study of photodynamic therapy for high-grade gliomas using a novel boronated porphyrin. J Clin Oncol 2001;19(2):519–524.

    PubMed  CAS  Google Scholar 

  32. Rosenthal MA, Kavar B, Uren S, et al. Promising survival in patients with high-grade gliomas following therapy with a noval boronated porphyrin. J Clin Neurosci 2003;10(4):425–427.

    Article  PubMed  CAS  Google Scholar 

  33. Bisland SK, Lilge L, Lin A, et al. Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochem Photobiol 2004;80:22–30.

    Article  PubMed  CAS  Google Scholar 

  34. Stylli SS, Howes M, MacGregor L, et al. Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome. J Clin Neurosci 2004;11(6):584–596.

    Article  PubMed  CAS  Google Scholar 

  35. Sarissky M, Lavicka J, Kocanova S, et al. Diazepam enhances hypericin-induced photocytotoxicity and apoptosis in human glioblastoma cells. Neoplasma 2005;52(4):352–359.

    PubMed  CAS  Google Scholar 

  36. Hirschberg H, Sun CH, Tromberg BJ, et al. Enhanced cytotoxic effects of 5-aminolevulinic acid-mediated photodynamic therapy by concurrent hyperthermia in glioma spheroids. J Neurooncol 2004;70(3):289–299.

    Article  PubMed  Google Scholar 

  37. Goldacre RJ, Sylven B. On the access of blood-borne dyes to various tumour regions. Br J Cancer 1962;16: 306–322.

    PubMed  CAS  Google Scholar 

  38. Kaye AH, Morstyn G, Ashcroft RG. Uptake and retention of hematoporphyrin derivative in an in vivo/in vitro model of cerebral glioma. Neurosurgery 1985;17(6):883–890.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida Y, Dereski MO, Garcia JH, et al. Photoactivated Photofrin II: astrocytic swelling precedes endothelial injury in rat brain. J Neuropathol Exp Neurol 1992;51(1):91–100.

    PubMed  CAS  Google Scholar 

  40. Hill JS, Kahl SB, Stylli SS, et al. Selective tumor kill of cerebral glioma by photodynamic therapy using a boronated porphyrin photosensitizer. Proc Natl Acad Sci USA 1995;92(26): 12126–12130.

    Article  PubMed  CAS  Google Scholar 

  41. Ito S, Rachinger W, Stepp H, et al. Oedema formation in experimental photo-irradiation therapy of brain tumours using 5-ALA. Acta Neurochir (Wien) 2005;147(1):57–65.

    Article  CAS  Google Scholar 

  42. Kongshaug M, Moan J, Brown SB. The distribution of porphyrins with different tumour localising ability among human plasma proteins. Br J Cancer 1989;59(2):184–188.

    PubMed  CAS  Google Scholar 

  43. Gal D, MacDonald PC, Porter JC, et al. Cholesterol metabolism in cancer cells in monolayer culture. III. Low-density lipoprotein metabolism. Int J Cancer 1981;28(3):315–319.

    Article  PubMed  CAS  Google Scholar 

  44. Jori G. Transport and tissue delivery of photosensitizers. In: C.F.S.N. 146, ed. Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use. John Whiley & Sons: Chichester, UK, 1980;78-94.

    Google Scholar 

  45. Evenson JF, Moan J, Hindar A, et al. Tissue distribution of 3H-hematoporphyrin derivative and its main components, 67Ga and 131I-albumin in mice bearingLewis lung carcinoma. In: Doiron GC DR, ed., Porphyrin Localization and Treatment of Tumours. Alan R Liss: New York, 1984;541-562.

    Google Scholar 

  46. Verma A, Nye JS, Snyder SH. Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. Proc Natl Acad Sci USA 1987;84(8):2256–2260.

    Article  PubMed  CAS  Google Scholar 

  47. Oseroff AR, Ohuoha D, Ara G, et al. Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proc Natl Acad Sci USA 1986;83(24):9729–9733.

    Article  PubMed  CAS  Google Scholar 

  48. Dougherty TJ, Weishaupt KR, Boyle DG. Photodynamic sensitizers. In: DeVita VT Jr, Rosenberg SA, eds., Cancer: Principles and Practice of Oncology. JB Lippincott: Philadelphia, 1985;2272-2279.

    Google Scholar 

  49. Leach MW, Khoshyomn S, Bringus J, et al. Normal brain tissue response to photodynamic therapy using aluminum phthalocyanine tetrasulfonate in the rat. Photochem Photobiol 1993;57(5):842–845.

    PubMed  CAS  Google Scholar 

  50. Yoshida Y, Dereski MO, Garcia JH, et al. Neuronal injury after photoactivation of photofrin II. Am J Pathol 1992;141(4):989–997.

    PubMed  CAS  Google Scholar 

  51. Ji Y, Walstad D, Brown JT, et al. Interstitial photoradiation injury of normal brain. Lasers Surg Med 1992;12(4):425–431.

    Article  PubMed  CAS  Google Scholar 

  52. Svaasand LO, Ellingsen R. Optical penetration in human intracranial tumors. Photochem Photobiol 1985;41(1):73–76.

    PubMed  CAS  Google Scholar 

  53. Muller PJ, Wilson BC. Photodynamic therapy: cavitary photoillumination of malignant cerebral tumours using a laser coupled inflatable balloon. Can J Neurol Sci 1985;12(4):371–373.

    PubMed  CAS  Google Scholar 

  54. Muller PJ, Wilson BC. An update on the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo. Phys Med Biol 1986;31(11):1295–1297.

    Article  PubMed  CAS  Google Scholar 

  55. Waldow SM, Dougherty TJ. Interaction of hyperthermia and photoradiation therapy. Radiat Res 1984;97(2): 380–385.

    Article  PubMed  CAS  Google Scholar 

  56. Origitano TC, Reichman OH. Photodynamic therapy for intracranial neoplasms: development of an image-based computer-assisted protocol for photodynamic therapy of intracranial neoplasms. Neurosurgery 1993;32(4):587–595; discussion 595-596.

    Article  PubMed  CAS  Google Scholar 

  57. Berenbaum MC, Hall GW, Hoyes AD. Cerebral photosensitisation by haematoporphyrin derivative. Evidence for an endothelial site of action. Br J Cancer 1986;53(1):81–89.

    PubMed  CAS  Google Scholar 

  58. Allardice JT, Abulafi AM, Webb DG, et al. Standardization of intralipid for light scattering in clinical photodynamic therapy. Lasers Med Sci 1992;7:461–465.

    Article  Google Scholar 

  59. Schmidt MH, Meyer G A, Reichert KW, et al. Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neurooncol 2004;67(1–2):201–207.

    Article  PubMed  Google Scholar 

  60. Madsen SJ, Sun CH, Tromberg BJ, et al. Repetitive 5-aminolevulinic acid-mediated photodynamic therapy on human glioma spheroids. J Neurooncol 2003;62(3):243–250.

    Article  PubMed  Google Scholar 

  61. Doiron D. Photophysics of an instrumentation for porphyrin detection and activation. In Doiron GCDR, ed., Porphyrin localization and treatment of tumors. Alan R Liss: New York, 1984;41-73.

    Google Scholar 

  62. Bugelski PJ, Porter CW, Dougherty TJ. Autoradiographic distribution of hematoporphyrin derivative in normal and tumor tissue of the mouse. Cancer Res 1981;41(11 Pt 1):4606–4612.

    PubMed  CAS  Google Scholar 

  63. Kaye A.H. Photoradiation therapy of brain tumours. In C.F.S.N. 146, ed., Photosensitising Compounds:Their Chemistry, Biology and Clinical Use. John Wiley & Sons: Chichester, United Kingdom. 1989;209-221.

    Google Scholar 

  64. Kaye AH, Hill JS. A review of photoradiation therapy in the management of central nervous system tumours. Aust N Z J Surg 1988;58(10):767–780.

    PubMed  CAS  Google Scholar 

  65. Kelly PJ, KallB A, Goerss S, et al. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J Neurosurg 1986;64(3):427–439.

    PubMed  CAS  Google Scholar 

  66. Ji Y, Walstad D, Brown JT, et al. Improved survival from intracavitary photodynamic therapy of rat glioma. Photochem Photobiol 1992;56(3):385–390.

    PubMed  CAS  Google Scholar 

  67. Laws Jr. ER, WharenJr. RE, Anderson RE. Photoradiation therapy for malignant glioma. In Wlikins RSRH, ed., Neurosurgery Update I. McGraw-Hill: New York, 1990;260-265.

    Google Scholar 

  68. Wharen RE, Anderson RE, Laws E Jr. Photoradiationtherapy of brain tumours. In: Salcman M, ed., Neurobiology of Brain Tumours. Williams & Wilkins: Baltimore, 1991;341-357.

    Google Scholar 

  69. Whelan HT, Schmidt MH, Segura AD, et al. The role of photodynamic therapy in posterior fossabrain tumors. A preclinical study in a canine glioma model. J Neurosurg 1993;79(4):562–568.

    PubMed  CAS  Google Scholar 

  70. Schwatrz SK, Absolon K, Vermund H. Some relationships of porphyrins, x-rays and tumours. U Minn MedBull 1955;27:7–13.

    Google Scholar 

  71. Forbes IJ, Ward AD, Jacka FJ, et al. A multi-disciplinary approach to phototherapy of human cancers. In: Doiron DR, Gomer CJ, eds., Porphyrin Localisation and Treatment of Tumors. Alan R Liss: New York, 1984; 693–708.

    Google Scholar 

  72. Wharen Jr. RE, So S, Anderson RE, et al. Hematoporphyrin derivative photocytotoxicity of human glioblas-toma in cell culture. Neurosurgery 1986;19(4):495–501.

    Article  PubMed  Google Scholar 

  73. Muller PJ, Wilson BC. Photodynamic therapy of malignant brain tumours. Can J Neurol Sci 1990;17(2): 193–198.

    PubMed  CAS  Google Scholar 

  74. McCulloch GAJ, Forbes IJ, Lee See K, et al. Phototherapy in malignant brain tumours. In: Doiron GCDR, ed., Porphyrin Localisation and Treatment of Tumors. Alan R Liss: New York, 1984;709-717.

    Google Scholar 

  75. Laws ER Jr., Cortese DA, Kinsey JH, et al. Photoradiation therapy in the treatment of malignant brain tumors: a phase I (feasibility) study. Neurosurgery 1981;9(6):672–678.

    Article  PubMed  Google Scholar 

  76. Perria C, Carai M, Falzoi A, et al. Photodynamic therapy of malignant brain tumors: clinical results of, difficulties with, questions about, and future prospects forthe neurosurgical applications. Neurosurgery 1988;23(5):557–563.

    Article  PubMed  CAS  Google Scholar 

  77. Wharen RE Jr., Anderson RE, Laws ER Jr. Quantitation of hematoporphyrin derivative in human gliomas, experimental central nervous system tumors, and normal tissues. Neurosurgery 1983;12(4):446–450.

    Article  PubMed  Google Scholar 

  78. Kostron H, Fritsch E, Grunert V. Photodynamic therapy of malignant brain tumours: a phase I/II trial. Br J Neurosurg 1988;2(2):241–248.

    Article  PubMed  CAS  Google Scholar 

  79. Laws ER Jr., Wharen RE Jr., Anderson R.E. The treatment of brain tumors by photoradiation. In: Pluchino BGF, ed., Advanced Technology in Neurosurgery. Springer-Verlag: Berlin, 1988;46-60.

    Google Scholar 

  80. Krishnamurthy S, Powers SK, Witmer P, et al. Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers Surg Med 2000;27(3):224–234.

    Article  PubMed  CAS  Google Scholar 

  81. Noske DP, Wolbers JG, Sterenborg HJ. Photodynamic therapy of malignant glioma. A review of literature. Clin Neurol Neurosurg 1991;93(4):293–307.

    Article  PubMed  CAS  Google Scholar 

  82. Popovic EA, Kaye AH, Hill JS. Photodynamic therapy of brain tumors. Semin Surg Oncol 1995;11(5):335–345.

    Article  PubMed  CAS  Google Scholar 

  83. Wilson B. Photodynamic therapy: Light delivary and dosage for second generation sensitizers. In: C.F.S.N. 146 ed., Photosensitising Compounds: Their Chemistry, Biology and Clinical Use. John Wiley & Sons: Chichester, United Kingdom, 1989;60-77.

    Google Scholar 

  84. Aimsworth MD, Piper JA. Laser systems for photodynamic therapy. In: Morstyn G, Kaye AH, eds., Photo-therapy of Cancer. Harwood Academic Publishers: London, 1990;37-72.

    Google Scholar 

  85. Kaye AH. Adjuvant treatment of malignant brain tumours. Aust N Z J Surg 1989;59(11):831–833.

    PubMed  CAS  Google Scholar 

  86. Barth RF, Soloway AH, Fairchild RG. Boron neutron capture therapy for cancer. Sci Am 1990;263(4):100–103,106-107.

    Article  PubMed  CAS  Google Scholar 

  87. Ozawa T, Afzal J, Lamborn KR, et al. Toxicity, biodistribution, and convection-enhanced delivery of the boronated porphyrin BOPP in the 9L intracerebral rat glioma model. Int J Radiat Oncol Biol Phys 2005;63(1):247–252.

    Article  PubMed  CAS  Google Scholar 

  88. Ozawa T, Santos RA, Lamborn KR, et al. In vivo evaluation of the boronated porphyrin TABP-1 in U-87 MG intracerebral human glioblastoma xenografts. Mol Pharm 2004;1(5):368–374.

    Article  PubMed  CAS  Google Scholar 

  89. Dozzo P, Koo MS, Berger S, et al. Synthesis, characterization, and plasmalipoprotein association of anucleus-targeted boronated porphyrin. J Med Chem 2005;48(2):357–359.

    Article  PubMed  CAS  Google Scholar 

  90. Gomer CJ, Rucker N, Ferrario A, et al. Properties and applications of photodynamic therapy. Radiat Res 1989;120(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  91. Almeida RD, Manadas BJ, Carvalho AP, et al. Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 2004;1704(2):59–86.

    PubMed  CAS  Google Scholar 

  92. Plaetzer K, Kiesslich T, Oberdanner CB, et al. Apoptosis following photodynamic tumor therapy: induction, mechanisms and detection. Curr Pharm Des 2005;11(9): 1151–1165.

    Article  PubMed  CAS  Google Scholar 

  93. Agostinis P, Buytaert E, Breyssens H, et al. Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci 2004;3(8): 721–729.

    Article  PubMed  CAS  Google Scholar 

  94. Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res 2005;65(3):1018–1026.

    PubMed  CAS  Google Scholar 

  95. Schieke SM, von Montfort C, Buchczyk DP, et al. Singlet oxygen-induced attenuation of growth factor signaling: possible role of ceramides. Free Radic Res 2004;38(7):729–737.

    Article  PubMed  CAS  Google Scholar 

  96. Wong TW, Tracy E, Oseroff AR, et al. Photodynamic therapy mediates immediate loss of cellular responsive-ness to cytokines and growth factors. Cancer Res 2003;63(13):3812–3818.

    PubMed  CAS  Google Scholar 

  97. Popovic EA, Kaye AH, Hill JS. Current status of photodynamic therapy for brain tumors. In: Salcman M, ed., Current Techniques in Neurosurgery. Current Medicine: Philadelphia, 1994;124-140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kavar, B., Kaye, A.H. (2007). Photodynamic Therapy. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics