Skip to main content

Biophysical Investigations of the Prion Protein Using Electron Paramagnetic Resonance

  • Protocol
Prion Protein Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 459))

Summary

The binding of paramagnetic metal ions is thought to be an essential function of the prion protein and lends itself to interrogation by electron paramagnetic resonance (EPR), which probes the local coordination environment of bound metal ions to provide details of the metal-binding affinity, stoichiometry, and the symmetry and identity of its ligating atoms. It is also capable of identifying reactive oxygen/nitrogen species and peptide-derived radicals, in addition to monitoring protein-membrane dynamics and conformation by using site-directed spin labeling. An overview of the EPR technique as applied to the prion protein is given, key results are summarized, and some future experimental avenues are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jószai V, Zoltán N, Ősz K, Sanna D, Di Natale G, La Mendola D, Pappalardo G, Rizzarelli E, Sóvágó I (2006) Transition metal complexes of terminally protected peptides containing histidyl residues. J. Inorg. Biochem. 100: 1399–1409.

    Article  PubMed  Google Scholar 

  2. Deloncle R, Guillard O, Bind JL, Delaval J, Fleury N, Mauco G, Lesage G (2006) Free radical generation of protease-resistant prion after substitution of manganese for copper in bovine brain homogenate. Neurotoxicology 27: 437–444.

    Article  CAS  PubMed  Google Scholar 

  3. Brown DR, Hafiz F, Glassmith LL, Wong B-S, Jones IM, Clive C, Haswell S (2000) Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J. 19: 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  4. Gaggelli E, Bernardi F, Molteni F, Pogni R, Valensin D, Valensin G, Remelli M, Luczkowski M, Kozlowski H (2005) J. Am. Chem. Soc. 127: 996–1006.

    Article  CAS  PubMed  Google Scholar 

  5. Sutoh Y, Nishida Y (2005) Formation of a Mn(IV) species in the reaction mixture of a manganese(II) complex and an aliphatic aldehyde. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry 35: 575–577.

    Article  CAS  Google Scholar 

  6. Pilbrow JR (1990) Transition Ion Electron Paramagnetic Resonance, Oxford, UK: Clarendon Press.

    Google Scholar 

  7. Abragam A, Bleaney B (1970) Electron Paramagnetic Resonance of Transition Ions, Oxford, UK: Clarendon Press.

    Google Scholar 

  8. Pake GE, Estle TL (1973) The Physical Principles of Electron Paramagnetic Resonance, New York: WA Benjamin.

    Google Scholar 

  9. Schweiger A, Jeschke G (2001) Principles of Pulse Electron Paramagnetic Resonance, Oxford, UK: Oxford University Press.

    Google Scholar 

  10. Berliner LJ (ed) (1976) Spin Labeling—Theory and Applications, New York: Academic Press.

    Google Scholar 

  11. Boas JF, Pilbrow JR, Smith TD (1978) ESR of copper in biological systems. In: Biological Magnetic Resonance, Vol. 1, Berliner LJ and Reuben J (eds), New York: Plenum Press, 277–342.

    Google Scholar 

  12. Boas JF (1984) Electron paramagnetic resonance of copper proteins. In: Copper Proteins and Copper Enzymes, Vol. 1, Lontie R (ed), Boca Raton, FL: CRC Press, 5–62.

    Google Scholar 

  13. Deligiannakis Y, Louloudi M, Hadjiliadis N (2000) Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coord Chem Rev 204: 1–112.

    Article  CAS  Google Scholar 

  14. Wong B-S, Vénien-Bryan C¯, Williamson RA, Burton DR, Gambetti P, Sy M-S, Brown DR, Jones IM (2000) Copper refolding of prion protein. Biochem. Biophys. Res. Commun. 276: 1217–1224.

    Article  CAS  PubMed  Google Scholar 

  15. Kaupp M, Bühl M, Malkin VG (Eds) (2004) Calculation of NMR and EPR Parameters: Theory and Applications, Wiley-VCH, Germany: Weinheim.

    Google Scholar 

  16. Peisach J, Blumberg WE (1974) Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch. Biochem. Biophys. 165: 691–708.

    Article  CAS  PubMed  Google Scholar 

  17. Palmer G (1985) The electron paramagnetic resonance of metalloproteins. Biochem. Soc. Trans. 13: 548, 560.

    CAS  PubMed  Google Scholar 

  18. Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J. Biol. Chem. 273: 33107–33110.

    Article  CAS  PubMed  Google Scholar 

  19. Sakaguchi U, Addison AW (1979) Spectroscopic and redox studies of some copper(II) complexes with biomimetic donor atoms: implications for protein copper centres. J. Chem. Soc. Dalton Trans. 4: 600–608.

    Article  Google Scholar 

  20. Jeschke G (1996) PhD thesis, Swiss Federal Institute of Technology, section 6.3.2.

    Google Scholar 

  21. Janzen EG (1971) Spin trapping. Acc. Chem. Res. 4: 31–40.

    Article  CAS  Google Scholar 

  22. Mason RP, Buettner GR (2003) Spin-trapping methods for detecting superoxide and hydroxyl free radicals in vitro and in vivo. In: Critical Reviews of Oxidative Stress and Aging: Advances in Basic Science, Diagnostics and Intervention, Cutker RG and Rodriguez H (eds), Hackensack, NJ: World Scientific, 27–38.

    Google Scholar 

  23. Kennedy CH, Maples KR, Mason RP (1990) In vivo detection of free radical metabolites. Pure Appl. Chem. 62: 95–299.

    Article  Google Scholar 

  24. Shi H, Timmins G, Monske M, Burdick A, Kalyanaraman B, Liu Y, Clément J-L, Burchiel S, Liu KJ (2005) Evaluation of spin trapping agents and trapping conditions for detection of cell-generated reactive oxygen species. Arch. Biochem. Biophys. 437: 59–68.

    Article  CAS  PubMed  Google Scholar 

  25. Haya A, Burkittb MJ, Jones CM, Hartley RC (2005) Development of a new EPR spin trap DOD-8C for the trapping of lipid radicals at a predetermined depth within biological membranes. Arch. Biochem. Biophys. 435: 336–346.

    Article  Google Scholar 

  26. Turnbull S, Tabner BJ, Brown DR, Allsop D (2003) Copper-dependent generation of hydrogen peroxide from the toxic prion protein fragment PrP106—126. Neurosci. Lett. 336: 159–162.

    Article  CAS  PubMed  Google Scholar 

  27. Turnbull S, Tabner BJ, Brown DR, Allsop D (2003) Generation of hydrogen peroxide from mutant forms of the prion protein fragment PrP121—231. Biochemistry 42: 7675–7681.

    Article  CAS  PubMed  Google Scholar 

  28. Tabner BJ, Turnbull S, Fullwood NJ, German M, and Allsop D (2005) The production of hydrogen peroxide during early-stage protein aggregation: a common pathological mechanism in different neurodegenerative diseases? Biochem. Soc. Trans. 33: 548–550.

    Article  CAS  PubMed  Google Scholar 

  29. Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Carrington D, Mavros C, Beyreuther C, Carrington R, Masters CL, Cherny RA, Cappai R, Bush AI (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease β-amyloid. FASEB J. 2004; 18: 1427–1429.

    CAS  Google Scholar 

  30. Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF (2006) Delineating common molecular mechanisms in Alzheimer's and prion diseases. Trends Biochem. Sci. 31: 465–472.

    Article  CAS  PubMed  Google Scholar 

  31. Berliner L (1983) The spin-label approach to labeling membrane protein sulfhydryl groups. Ann. N Y Acad. Sci. 414: 153–161.

    Article  CAS  PubMed  Google Scholar 

  32. Lundberg KM, Stenland CJ, Cohen FE, Prusiner SB, Millhauser GL (1997) Kinetics and mechanism of amyloid formation by the prion protein H1 peptide as determined by time-dependent ESR. Chem. Biol. 4: 345–355.

    CAS  Google Scholar 

  33. Inanami O, Hashida S, Iizuka D, Horiuchi M, Hiraoka W, Shimoyama Y, Nakamura H, Inagaki F, Kuwabara M. (2005) Conformational change in full-length mouse prion: a site-directed spin-labeling study. Biochem. Biophys. Res. Commun. 335: 785–792.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe Y, Inanami O, Horiuchi M, Hiraoka W, Shimoyama Y, Inagaki F, Kuwabara M (2006) Identification of pH-sensitive regions in the mouse prion by the cysteine-scanning spin-labeling ESR technique. Biochem. Biophys. Res. Commun. 350: 549–556.

    Article  CAS  PubMed  Google Scholar 

  35. Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL (2000) Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39: 13760–13771.

    Article  CAS  PubMed  Google Scholar 

  36. Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J, Scott WG, Millhauser GL (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41: 3991–4001.

    Article  CAS  PubMed  Google Scholar 

  37. Millhauser GL (2004) Copper binding in the prion protein. Acc. Chem. Res. 37: 79–85.

    Article  CAS  PubMed  Google Scholar 

  38. Chattopadhyay M, Walter ED, Newell DJ, Jackson PJ, Aronoff-Spencer E, Peisach J, Gerfen GJ, Bennett B, Antholine WE, Millhauser GL (2005) The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4. J. Am. Chem. Soc. 127: 12647–12656.

    Article  CAS  PubMed  Google Scholar 

  39. Walter ED, Chattopadhyay M, Millhauser GL (2006) The affinity of copper binding to the prion protein octarepeat domain: evidence for negative cooperativity. Biochemistry 45: 13083–13092.

    Article  CAS  PubMed  Google Scholar 

  40. del Pino P, Weiss A, Bertsch U, Renner C, Mentler M, Grantner K, Fiorino F, Meyer-Klaucke W, Moroder L, Kretzschmar HA, Parak FG (2007) The configuration of the Cu2+ binding region in full-length human prion protein. Eur. Biophys. J. 36: 239–252.

    Article  PubMed  Google Scholar 

  41. Cereghetti GM, Schweiger A, Glockshuber R, Van Doorslaer SV (2001) Electron paramagnetic resonance evidence for binding of the Cu2+ to the C-terminal domain of the murine prion protein. Biophys. J. 81: 516–525.

    Article  CAS  PubMed  Google Scholar 

  42. Van Doorslaer S V, Cereghetti GM, Glockshuber R, Schweiger A (2001) Unraveling the Cu2+ binding sites in the C-terminal domain of the murine prion protein: a pulse EPR and ENDOR study. J. Phys. Chem. B 105: 1631–1639.

    Article  Google Scholar 

  43. Burns CS, Aronoff-Spencer E, Legname G, Prusiner S, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL. (2003) Copper coordination in the full-length prion protein. Biochemistry 42: 6794–6803.

    Article  CAS  PubMed  Google Scholar 

  44. Hureau C, Charlet L, Dorlet P, Gonnet F, Spadini L, Anxolabéhère-Mallart E, Girerd J-J (2006) A spectroscopic and voltammetric study of the pH-dependent Cu(II) coordination to the peptide GGGTH: relevance to the fifth Cu(II) site in the prion protein. J. Biol. Inorg. Chem. 11: 735–744.

    Article  CAS  PubMed  Google Scholar 

  45. Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C,Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R (2001) Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP1067#x2014;126. Biochemistry 40: 8073–8084.

    Article  CAS  PubMed  Google Scholar 

  46. Belosi B, Gaggelli E, Guerrini R, Kozlowski H, Luczkowski M, Mancini FM, Remelli M, Valensin D, Valensin G. (2004) Copper binding to the neurotoxic peptide PrP106–126: thermodynamic and structural studies. Chem. Biol. Chem. 5: 349–359.

    CAS  Google Scholar 

  47. Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) Preferential Cu2+ coordination by His96 and His111 induces β sheet formation in the unstructured amyloidogenic region of the prion protein. J. Biol. Chem. 279: 32018–32027.

    Article  CAS  PubMed  Google Scholar 

  48. Cereghetti GM, Schweiger A, Glockshuber R, Van Doorslaer S (2003) Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases. Biophys. J. 84: 1985–1997.

    Article  CAS  PubMed  Google Scholar 

  49. Grasso D, Grasso G, Guantieri V, Impellizzeri G, La Rosa C, Milardi D, Micera G, Õsz K, Pappalardo G, Rizzarelli E, Sanna D, Sóvágó I (2006) Environmental effects on a prion's Helix II domain: copper(II) and membrane interactions with PrP180—193 and its analogues. Chem. Eur. J. 12: 537–547.

    Article  Google Scholar 

  50. Brown DR, Guantieri V, Grasso G, Impellizzeri G, Pappalardo G, Rizzarelli E (2004) Copper(II) complexes of peptide fragments of the prion protein. Conformation changes induced by copper(II) and the binding motif in C-terminal protein region J. Inorg. Biochem. 98: 133–143.

    Article  CAS  PubMed  Google Scholar 

  51. Renner C, Fiori S, Fiorino F, Landgraf D, Deluca D, Mentler M, Grantner K, Parak FG, Kretzschmar H, Moroder L (2004) Micellar environments induce structuring of the N-terminal tail of the prion protein. Biopolymers 73: 421–433.

    Article  CAS  PubMed  Google Scholar 

  52. Hicks MR, Gill AC, Bath IK, Rullay AK, Sylvester ID, Crout DH,Pinheiro TJT (2006) Synthesis and structural characterization of a mimetic membrane-anchored prion protein. FEBS J. 273: 1285–1299.

    Article  CAS  PubMed  Google Scholar 

  53. Blough NV, Simpson DJ (1998) Chemically mediated fluorescence yield switching in nitroxide-fluorophore adducts: optical sensors of radical/redox reactions. J. Am. Chem. Soc. 110: 1915–1917.

    Article  Google Scholar 

  54. Jiang J, Borisenko GG, Osipov A, Martin I, Chen R, Shvedova AA, Sorokin A, Tyurina YY, Potapovich A, Tyurin VA, Graham SH, KaganVE (2004) Arachidonic acid-induced carbon-centered radicals and phospholipid peroxidation in cyclo-oxygenase-2-transfected PC12 cells. J. Neurochem. 90: 1036–1049.

    Article  CAS  PubMed  Google Scholar 

  55. Ramirez DC, Gomez Mejiba SE, Mason RP (2005) Copper-catalyzed protein oxidation and its modulation by carbon dioxide. J. Biol. Chem. 280: 27402–27411.

    Article  CAS  PubMed  Google Scholar 

  56. Abdelraheim SR, Královicová S, Brown DR (2006) Hydrogen peroxide cleavage of the prion protein generates a fragment able to initiate polymerisation of full length prion protein. Int. J. Biochem. Cell Biol. 38: 1429–1440.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Drew, S.C., Barnham, K.J. (2008). Biophysical Investigations of the Prion Protein Using Electron Paramagnetic Resonance. In: Hill, A.F. (eds) Prion Protein Protocols. Methods in Molecular Biology™, vol 459. Humana Press. https://doi.org/10.1007/978-1-59745-234-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-234-2_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-897-3

  • Online ISBN: 978-1-59745-234-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics