Skip to main content

Analysis of Endogenous PrPC Processing in Neuronal and Non-neuronal Cell Lines

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 459))

Summary

Numerous transmembrane and glycosylphosphatidylinositol (GPI)-anchored proteins, covering a vast range of structural and functional classes, are recognized to undergo proteolytic cleavage or shedding from the plasma membrane. Although this widespread phenomenon seems fundamental to normal cellular biology, proteolytic processing also seems to play a central role in the pathogenesis of some neurodegenerative disorders such as Alzheimer's disease. An analogous situation may exist in prion disorders. The GPI-anchored cellular prion protein (PrPC) may be endoproteolytically cleaved at two different sites: one at the C-terminal end of the octameric repeat region and the other within a potentially neurotoxic and amyloidogenic region of the protein. The relevance of these alternative proteolytic events to normal cell function and pathogenesis is incompletely resolved. Study and characterization of the constitutive processing of PrPC will provide insight into the biological relevance of alternative cleavages in terms of normal PrPC function, and also into the potential role, if any, to disease causation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bendheim PE, Brown HR, Rudelli RD, et al. (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology;42(1):149–156.

    CAS  PubMed  Google Scholar 

  2. Horiuchi M, Yamazaki N, Ikeda T, Ishiguro N, Shinagawa M. (1995) A cellular form of prion protein (PrPC) exists in many non-neuronal tissues of sheep. J Gen Virol;76(10):2583–2587.

    Article  CAS  PubMed  Google Scholar 

  3. Ford MJ, Burton LJ, Morris RJ, Hall SM. (2002) Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience;113(1):177–192.

    Article  CAS  PubMed  Google Scholar 

  4. Sakaguchi S, Katamine S, Shigematsu K, et al. (1995) Accumulation of proteinase K-resistant prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt-Jakob disease agent. J Virol;69(12):7586–7592.

    CAS  PubMed  Google Scholar 

  5. Bueler H, Aguzzi A, Sailer A, et al. (1993) Mice devoid of PrP are resistant to scrapie. Cell;73(7):1339–1347.

    Article  CAS  PubMed  Google Scholar 

  6. Collins SJ, Lawson VA , Masters CL. (2004) Transmissible spongiform encephalopathies. Lancet;363(9402):51–61.

    Article  CAS  PubMed  Google Scholar 

  7. Lawson VA , Collins SJ, Masters CL, Hill AF. (2005) Prion protein glycosylation. J Neurochem;93(4):793–801.

    Article  CAS  PubMed  Google Scholar 

  8. Ehlers MR, Riordan JF. (1991) Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry;30(42):10065–10074.

    Article  CAS  PubMed  Google Scholar 

  9. Chen SG, Teplow DB, Parchi P, Teller JK, Gambetti P, Autilio-Gambetti L. (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem;270(32):19173–19180.

    Article  CAS  PubMed  Google Scholar 

  10. Jimenez-Huete A, Lievens PM, Vidal R, et al. (1998) Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol;153(5):1561–1572.

    Article  CAS  PubMed  Google Scholar 

  11. Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, Telling GC. (2004) Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem;279(21):21948–21956.

    Article  CAS  PubMed  Google Scholar 

  12. Vincent B, Paitel E, Saftig P, et al. (2001) The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem;276(41):37743–37746.

    CAS  PubMed  Google Scholar 

  13. McMahon HE, Mange A, Nishida N, Creminon C, Casanova D, Lehmann S. (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem;276(3):2286–2291.

    Article  CAS  PubMed  Google Scholar 

  14. Watt NT, Taylor DR, Gillott A, Thomas DA, Perera WS, Hooper NM. (2005) Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. J Biol Chem;280(43):35914–35921.

    Article  CAS  PubMed  Google Scholar 

  15. Wilquet V, De Strooper B. (2004) Amyloid-beta precursor protein processing in neurodegeneration. Curr Opin Neurobiol;14(5):582–588.

    Article  CAS  PubMed  Google Scholar 

  16. Buxbaum JD, Liu KN, Luo Y, et al. (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem;273(43):27765–27767.

    Article  CAS  PubMed  Google Scholar 

  17. Forloni G, Angeretti N, Chiesa R, et al. (1993) Neurotoxicity of a prion protein fragment. Nature;362(6420):543–546.

    Article  CAS  PubMed  Google Scholar 

  18. Checler F, Vincent B. (2002) Alzheimer's and prion diseases: distinct pathologies, common proteolytic denominators. Trends Neurosci;25(12):616–620.

    Article  CAS  PubMed  Google Scholar 

  19. Vincent B. (2004) ADAM proteases: protective role in Alzheimer's and prion diseases? Curr Alzheimer Res;1(3):165–174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor John Collinge for the ICSM18, Professor Man Sun-Sy for the 8B4 monoclonal antibodies, and Dr. Victoria Lawson for the A.R30 polyclonal antibody. This work was supported by Australian NHMRC Program grants 208978 and 400202.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Lewis, V., Collins, S.J. (2008). Analysis of Endogenous PrPC Processing in Neuronal and Non-neuronal Cell Lines. In: Hill, A.F. (eds) Prion Protein Protocols. Methods in Molecular Biology™, vol 459. Humana Press. https://doi.org/10.1007/978-1-59745-234-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-234-2_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-897-3

  • Online ISBN: 978-1-59745-234-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics