Skip to main content

Plasmid-Based Gene Transfer in Mouse Skeletal Muscle by Electroporation

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 433))

Summary

Advances in molecular biology and genetics have provided an abundance of descriptive biological data. Ascribing physiologic roles to these data is an important task to translate this information into improvements in human health. Non-viral transgene delivery of a transgene is a promising approach for defining the physiologic role of a specific protein in vivo. This methodology also has therapeutic potential for the treatment of various diseases. Plasmid DNA injection followed by controlled electric pulses across the injection site (i.e., electroporation or electrotransfer) can dramatically increase transgene expression in skeletal muscle, but in some methods can result in local tissue damage. Muscle damage and subsequent repair processes may confound the measurement of physiological, biochemical, and molecular properties for a given experiment. In addition, it is essential to eliminate damage to existing muscle fibers if such procedures are to be used for the treatment of myopathies and muscle wasting conditions. The measurement of muscle contractile parameters (i.e., function) is an important end-point for assessing the role of ectopically delivered proteins in vivo. As such, methodologies that allow the delivery of a transgene to levels that have a physiological effect and do not compromise muscle function will aid in the characterization of the role of specific proteins in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hacein-Bey-Abina S., Von Kalle C., Schmidt M., McCormack M.P., Wulffraat N., Leboulch P., Lim A., Osborne C.S., Pawliuk R., Morillon E., Sorensen R., Forster A., Fraser P., Cohen J.I., de Saint Basile G., Alexander I., Wintergerst U., Frebourg T., Aurias A., Stoppa-Lyonnet D., Romana S., Radford-Weiss I., Gross F., Valensi F., Delabesse E., Macintyre E., Sigaux F., Soulier J., Leiva L.E., Wissler M., Prinz C., Rabbitts T.H., Le Deist F., Fischer A. and Cavazzana-Calvo M. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419.

    Article  CAS  PubMed  Google Scholar 

  2. Wells D.J. (2006) Viral and non-viral methods for gene transfer into skeletal muscle. Curr. Opin. Drug Discov. Devel. 9, 163–168.

    CAS  PubMed  Google Scholar 

  3. McMahon J.M. and Wells D.J. (2004) Electroporation for gene transfer to skeletal muscles: current status. BioDrugs 18, 155–165.

    Article  CAS  PubMed  Google Scholar 

  4. Wolff J.A., Malone R.W., Williams P., Chong W., Acsadi G., Jani A. and Felgner P.L. (1990) Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  5. Danko I., Williams P., Herweijer H., Zhang G., Latendresse J.S., Bock I. and Wolff J.A. (1997) High expression of naked plasmid DNA in muscles of young rodents. Hum. Mol. Genet. 6, 1435–1443.

    Article  CAS  PubMed  Google Scholar 

  6. Hartikka J., Bozoukova V., Jones D., Mahajan R., Wloch M.K., Sawdey M., Buchner C., Sukhu L., Barnhart K.M., Abai A.M., Meek J., Shen N. and Manthorpe M. (2000) Sodium phosphate enhances plasmid DNA expression in vivo. Gene Ther. 7, 1171–1182.

    Article  CAS  PubMed  Google Scholar 

  7. Blomberg P., Eskandarpour M., Xia S., Sylven C. and Islam K.B. (2002) Electroporation in combination with a plasmid vector containing SV40 enhancer elements results in increased and persistent gene expression in mouse muscle. Biochem. Biophys. Res. Commun. 298, 505–510.

    Article  CAS  PubMed  Google Scholar 

  8. Andre F.M., Cournil-Henrionnet C., Vernerey D., Opolon P. and Mir L.M. (2006) Variability of naked DNA expression after direct local injection: the influence of the injection speed. Gene Ther. 13, 1619–1627.

    Article  CAS  PubMed  Google Scholar 

  9. Mir L.M., Bureau M.F., Gehl J., Rangara R., Rouy D., Caillaud J.M., Delaere P., Branellec D., Schwartz B. and Scherman D. (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. U. S. A. 96, 4262–4267.

    Article  CAS  PubMed  Google Scholar 

  10. Niedzinski E.J., Chen Y.J., Olson D.C., Parker E.A., Park H., Udove J.A., Scollay R., McMahon B.M. and Bennett M.J. (2003) Enhanced systemic transgene expression after nonviral salivary gland transfection using a novel endonuclease inhibitor/DNA formulation. Gene Ther. 10, 2133–2138.

    Article  CAS  PubMed  Google Scholar 

  11. Lee M.J., Cho S.S., Jang H.S., Lim Y.S., You J.R., Park J., Suh H., Kim J.A., Park J.S. and Kim D.K. (2002) Optimal salt concentration of vehicle for plasmid DNA enhances gene transfer mediated by electroporation. Exp. Mol. Med. 34, 265–272.

    CAS  PubMed  Google Scholar 

  12. Lefesvre P., Attema J. and van Bekkum D. (2002) A comparison of efficacy and toxicity between electroporation and adenoviral gene transfer. B.M.C. Mol. Biol. 3, 12.

    Article  Google Scholar 

  13. Taylor J., Babbs C.F., Alzghoul M.B., Olsen A, Latour M., Pond A.L., and Hannon K. (2004) Optimization of ectopic gene expression in skeletal muscle through DNA transfer by electroporation. B.M.C. Biotechnol. 4, 11.

    Article  CAS  Google Scholar 

  14. Schertzer J.D., Plant D.R. and Lynch G.S. (2006) Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Mol. Ther. 13, 795–803.

    Article  CAS  PubMed  Google Scholar 

  15. McMahon J.M., Signori E., Wells K.E., Fazio V.M. and Wells D.J. (2001) Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase – increased expression with reduced muscle damage. Gene Ther. 8, 1264–1270.

    Article  CAS  PubMed  Google Scholar 

  16. Schertzer J.D. and Lynch G.S. (2006) Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Ther. 13, 1657–1664.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

D., J., and, S., Lynch, G.S. (2008). Plasmid-Based Gene Transfer in Mouse Skeletal Muscle by Electroporation. In: Gene Therapy Protocols. Methods in Molecular Biology™, vol 433. Humana Press. https://doi.org/10.1007/978-1-59745-237-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-237-3_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-903-1

  • Online ISBN: 978-1-59745-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics