Skip to main content

Preclinical Models of Tumor Growth and Response

  • Chapter
In Vivo Imaging of Cancer Therapy

Abstract

an important role in cancer drug discovery for more than 60 years. The same models have proven critical as tools for the elucidation of the molecular basis of neoplastic transformation, the processes involved in tumor progression and metastasis, and the determinants of therapeutic success or failure. More recently, transgenic models in particular have been used to “validate” and prioritize new strategies for therapeutic intervention. In vivo cancer models can be considered to fall within two broad classes, transplantable models, and in situ models, each with a number of subtypes (Fig. 1). For pragmatic reasons, transplantable models as a group are the most commonly used for drug evaluation, while in situ models such as cancer-prone transgenic mice provide a rich source of information on cancer etiology. It should be noted that each transplantable model represents the tumor of a single patient, not a tumor type. This discussion is centered on the application of both model types, and the potential impact of imaging technologies for cancer drug discovery. However, with recent advances in preclinical imaging technologies, these models are also proving useful in the development and testing of new imaging techniques and contrast agents. Increasingly, with the expanding role of drugs tied to specific molecular targets, these models are also being used to optimize and validate clinical imaging strategies. Finally, molecular imaging techniques are finding a critical role preclinically in the simultaneous confirmation of mechanism of action and assessment of efficacy. This is particularly true in orthotopic or transgenic model systems.

Schematic representation of the broad categories of preclinical cancer models in use today. In situ tumor models can be subcategorized by the method for induction of the tumor. Transplantable tumor models are commonly subcategorized according to whether the tumor is implanted in the organ in which the cell line originated (orthotopic versus ectopic) and in the species in which it originated (syngeneic versus xenogeneic).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dykes D, Waud W. Murine L1210 and P388 leukemias. In: Teicher B, ed. Tumor Models in Cancer Research. Totowa, NJ: Humana Press, Inc., 2002:23–40.

    Google Scholar 

  2. Venditti JM, Humphreys SR, Goldin A. Investigation of the activity of cytoxan against leukemia L1210 in mice. Cancer Res 1959;19:986–995.

    PubMed  CAS  Google Scholar 

  3. Law LW, Potter M. Further evidence of indirect induction by x-radiation of lymphocytic neoplasms in mice. J Natl Cancer Inst 1958;20(3):489–493.

    PubMed  CAS  Google Scholar 

  4. Burchenal JH. Murine and human leukemias. Bibl Haematol 1975 (40):665–677.

    PubMed  CAS  Google Scholar 

  5. Morris HP, Slaughter LJ. Historical development of transplantable hepatomas. Adv Exp Med Biol 1977;92:1–19.

    PubMed  CAS  Google Scholar 

  6. Double JA, Ball CR, Cowen PN. Transplantation of adenocarcinomas of the colon in mice. J Natl Cancer Inst 1975;54(1):271–275.

    PubMed  CAS  Google Scholar 

  7. Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr. Biology and therapeutic response of a mouse mammary adenocarcinoma (16/C) and its potential as a model for surgical adjuvant chemotherapy. Cancer Treat Rep 1978;62(10):1471–1488.

    PubMed  CAS  Google Scholar 

  8. Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr. Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. Cancer Res 1975;35(9):2434–2439.

    PubMed  CAS  Google Scholar 

  9. Langdon SP, Gescher A, Hickman JA, Stevens MF. The chemosensitivity of a new experimental model-the M5076 reticulum cell sarcoma. Eur J Cancer Clin Oncol 1984;20(5):699–705.

    PubMed  CAS  Google Scholar 

  10. Shay H, Aegerter EA, et al. Development of adenocarcinoma of the breast in the Wistar rat following the gastric instillation of methylcholanthrene. J Natl Cancer Inst 1949;10(2):255–266.

    PubMed  CAS  Google Scholar 

  11. Stewart HL, Hare WV, et al. Adenocarcinoma and other lesions of the glandular stomach of mice, following intramural injection of 20-methylcholanthrene. J Natl Cancer Inst 1949;10(2):359; Discussion, 99–403.

    PubMed  CAS  Google Scholar 

  12. Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol 1973;242(118):148–149.

    PubMed  CAS  Google Scholar 

  13. Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 1975;35(1):218–224.

    PubMed  CAS  Google Scholar 

  14. Morris HP. Studies on the development, biochemistry, and biology of experimental hepatomas. Adv Cancer Res 1965;9:227–302.

    PubMed  CAS  Google Scholar 

  15. Skipper HE. Drug evaluation in experimental tumor systems: Potential and limitations in 1961. Cancer Chemother Rep 1962;16:11–18.

    PubMed  CAS  Google Scholar 

  16. Skipper HE, Schmidt LH. A manual on quantitative drug evaluation in experimental tumor systems. I. Background, description of criteria, and presentation of quantitative therapeutic data on various classes of drugs obtained in diverse experimental tumor systems. Cancer Chemother Rep 1962;17:1–143.

    PubMed  CAS  Google Scholar 

  17. Skipper HE. Cancer chemotherapy is many things: G.H.A. Clowes Memorial Lecture. Cancer Res 1971;31(9):1173–1180.

    PubMed  CAS  Google Scholar 

  18. Schabel FM Jr. Screening, the cornerstone of chemotherapy. Cancer Chemother Rep 2 1972;3(1):309–313.

    Google Scholar 

  19. Schabel FM Jr, Corbett TH. Cell kinetics and the chemotherapy of murine solid tumors. Antibiot Chemother 1980;28:28–34.

    PubMed  Google Scholar 

  20. Schabel FM Jr, Montgomery JA, Skipper HE, Laster WR Jr, Thomson Jr. Experimental evaluation of potential anticancer agents. I. Quantitative therapeutic evaluation of certain purine analogs. Cancer Res 1961;21:690–699.

    PubMed  CAS  Google Scholar 

  21. Griswold DP Jr, Casey AE, Weisburger EK, Weisburger JH, Schabel FM Jr. On the carcinogenicity of a single intragastric dose of hydrocarbons, nitrosamines, aromatic amines, dyes, coumarins, and miscellaneous chemicals in female Sprague-Dawley rats. Cancer Res 1966;26(4):619–625.

    PubMed  Google Scholar 

  22. Griswold DP, Corbett TH. A colon tumor model for anticancer agent evaluation. Cancer 1975;36(6 Suppl):2441–2444.

    PubMed  CAS  Google Scholar 

  23. Griswold DP, Skipper HE, Laster WR Jr, Wilcox WS, Schabel FM Jr. Induced mammary carcinoma in the female rat as a drug evaluation system. Cancer Res 1966;26(10):2169–2180.

    PubMed  CAS  Google Scholar 

  24. Corbett TH, Roberts BJ, Leopold WR, et al. Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 1984;44(2):717–726.

    PubMed  CAS  Google Scholar 

  25. Roberts BJ, Fife WP, Corbett TH, Schabel FM. Response of five established solid transplantable mouse tumors and one mouse leukemia to hyperbaric hydrogen. Cancer Treat Rep 1978;62(7):1077–1079.

    PubMed  CAS  Google Scholar 

  26. Tapazoglou E, Polin L, Corbett TH, al-Sarraf M. Chemotherapy of the squamous cell lung cancer LC-12 with 5-fluorouracil, cisplatin, carboplatin or iproplatin combinations. Invest New Drugs 1988;6(4):259–264.

    PubMed  CAS  Google Scholar 

  27. Schabel FM, Griswold DP, Laster WR, Corbett TH, Lloyd HH. Quantitative evaluation of anticancer agent activity in experimental animals. Pharmacol Ther Part A: Chemother Toxicol Metabol Inhibit 1977;1(4):411–435.

    CAS  Google Scholar 

  28. Venditti JM, Wesley RA, Plowman J. Current NCI preclinical antitumor screening in vivo: Results of tumor panel screening, 1976–1982, and future directions. Adv Pharmacol Chemother 1984;20:1–20.

    PubMed  CAS  Google Scholar 

  29. Zee-Cheng RK, Cheng CC. Screening and evaluation of anticancer agents. Methods Find Exp Clin Pharmacol 1988;10(2):67–101.

    PubMed  CAS  Google Scholar 

  30. Jackson RC. The problem of the quiescent cancer cell. Adv Enzyme Regul 1989;29:27–46.

    PubMed  CAS  Google Scholar 

  31. DiGiovanni J. Modification of multistage skin carcinogenesis in mice. Prog Exp Tumor Res 1991;33:192–229.

    PubMed  CAS  Google Scholar 

  32. Konishi Y, Tsutsumi M, Tsujiuchi T. Mechanistic analysis of pancreatic ductal carcinogenesis in hamsters. Pancreas 1998;16(3):300–306.

    PubMed  CAS  Google Scholar 

  33. Miller MS, Leone-Kabler S, Rollins LA, et al. Molecular pathogenesis of transplacentally induced mouse lung tumors. Exp Lung Res 1998;24(4):557–577.

    PubMed  CAS  Google Scholar 

  34. Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat 1996;39(1):7–20.

    PubMed  CAS  Google Scholar 

  35. Nakagama H, Ochiai M, Ubagai T, et al. A rat colon cancer model induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, PhIP. Mutat Res 2002;506–507:137–144.

    PubMed  Google Scholar 

  36. Aamdal S, Fodstad O, Pihl A. Human tumor xenografts transplanted under the renal capsule of conventional mice. Growth rates and host immune response. Int J Cancer 1984;34(5):725–730.

    PubMed  CAS  Google Scholar 

  37. Bogden AE. The subrenal capsule assay (SRCA) and its predictive value in oncology. Ann Chir Gynaecol Suppl 1985;199:12–27.

    PubMed  CAS  Google Scholar 

  38. Simmons ML, Richter CB, Tennant RW, Franklin J. Production of specific pathogen-free rats in plastic germfree isolator rooms. In: Symposium on Gnotobiotic Life in Medical and Biological Research, 1968.

    Google Scholar 

  39. (U.S.) IoLAR, NetLibrary I. Guide for the care and use of laboratory animals. National Research Council, 1996.

    Google Scholar 

  40. Custer RP, Bosma GC, Bosma MJ. Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol 1985;120(3):464–477.

    PubMed  CAS  Google Scholar 

  41. Dorshkind K, Keller GM, Phillips RA, et al. Functional status of cells from lymphoid and myeloid tissues in mice with severe combined immunodeficiency disease. J Immunol 1984;132(4):1804–1808.

    PubMed  CAS  Google Scholar 

  42. Eaton GJ. Hair growth cycles and wave patterns in “nude” mice. Transplantation 1976;22(3):217–222.

    PubMed  CAS  Google Scholar 

  43. Flanagan SP. “Nude”, a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966;8(3):295–309.

    PubMed  CAS  Google Scholar 

  44. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983;301(5900):527–530.

    PubMed  CAS  Google Scholar 

  45. Bosma GC, Davisson MT, Ruetsch NR, Sweet HO, Shultz LD, Bosma MJ. The mouse mutation severe combined immune deficiency (scid) is on chromosome 16. Immunogenetics 1989;29(1):54–57.

    PubMed  CAS  Google Scholar 

  46. Clark EA, Shultz LD, Pollack SB. Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics 1981;12(5–6):601–613.

    PubMed  CAS  Google Scholar 

  47. Mahoney KH, Morse SS, Morahan PS. Macrophage functions in beige (Chediak-Higashi syndrome) mice. Cancer Res 1980;40(11):3934–3939.

    PubMed  CAS  Google Scholar 

  48. Roder J, Duwe A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature 1979;278(5703):451–453.

    PubMed  CAS  Google Scholar 

  49. Saxena RK, Saxena QB, Adler WH. Defective T-cell response in beige mutant mice. Nature 1982;295(5846):240–241.

    PubMed  CAS  Google Scholar 

  50. Scher I, Frantz MM, Steinberg AD. The genetics of the immune response to a synthetic doublestranded RNA in a mutant CBA mouse strain. J Immunol 1973;110(5):1396–1401.

    PubMed  CAS  Google Scholar 

  51. Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: Better than commonly perceived-but they can be improved. Cancer Biol Ther 2003;2(4 Suppl 1):S134–139.

    PubMed  CAS  Google Scholar 

  52. Suggitt M, Bibby MC. 50 years of preclinical anticancer drug screening: Empirical to target-driven approaches. Clin Cancer Res 2005;11(3):971–981.

    PubMed  CAS  Google Scholar 

  53. Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 2003;9(11):4227–4239.

    PubMed  Google Scholar 

  54. Jackson RC, Sebolt JS, Shillis JL, Leopold WR. The pyrazoloacridines: Approaches to the development of a carcinoma-selective cytotoxic agent. Cancer Invest 1990;8(1):39–47.

    PubMed  CAS  Google Scholar 

  55. Johnson JI, Decker S, Zaharevitz D, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001;84(10):1424–1431.

    PubMed  CAS  Google Scholar 

  56. Decker S, Hollingshead M, Bonomi CA, Carter JP, Sausville EA. The hollow fibre model in cancer drug screening: The NCI experience. Eur J Cancer 2004;40(6):821–826.

    PubMed  CAS  Google Scholar 

  57. Hall LA, Krauthauser CM, Wexler RS, Slee AM, Kerr JS. The hollow fiber assay. Methods Mol Med 2003;74:545–566.

    PubMed  Google Scholar 

  58. Fidler IJ, Wilmanns C, Staroselsky A, Radinsky R, Dong Z, Fan D. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev 1994;13(2):209–222.

    PubMed  CAS  Google Scholar 

  59. Killion JJ, Radinsky R, Fidler IJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 1998;17(3):279–284.

    PubMed  Google Scholar 

  60. Singh RK, Tsan R, Radinsky R. Influence of the host microenvironment on the clonal selection of human colon carcinoma cells during primary tumor growth and metastasis. Clin Exp Metastasis 1997;15(2):14–50.

    Google Scholar 

  61. Hart IR. “Seed and soil” revisited: Mechanisms of site-specific metastasis. Cancer Metastasis Rev 1982;1(1):5–16.

    PubMed  CAS  Google Scholar 

  62. Fidler IJ. The pathogenesis of cancer metastasis: The “seed and soil” hypothesis revisited. Nat Rev Cancer 2003;3(6):453–458.

    PubMed  CAS  Google Scholar 

  63. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;1:571–573.

    Google Scholar 

  64. Radinsky R. Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment. Cancer Metastasis Rev 1995;14(4):3–38.

    Google Scholar 

  65. Clarke AR, Hollstein M. Mouse models with modified p53 sequences to study cancer and ageing. Cell Death Differ 2003;10(4):44–50.

    Google Scholar 

  66. Kavanaugh CJ, Desai KV, Calvo A, et al. Pre-clinical applications of transgenic mouse mammary cancer models. Transgenic Res 2002;11(6):61–133.

    Google Scholar 

  67. Kwak I, Tsai SY, DeMayo FJ. Genetically engineered mouse models for lung cancer. Annu Rev Physiol 2004;66:647–663.

    PubMed  CAS  Google Scholar 

  68. Lakhtakia R, Panda SK. Transgenic mouse models and hepatocellular carcinoma: Future prospects. Trop Gastroenterol 2000;21(3):91–94.

    PubMed  CAS  Google Scholar 

  69. Lowy AM. Transgenic models of pancreatic cancer. Int J Gastrointest Cancer 2003;33(1):71–78.

    PubMed  Google Scholar 

  70. Lubet RA, Zhang Z, Wiseman RW, You M. Use of p53 transgenic mice in the development of cancer models for multiple purposes. Exp Lung Res 2000;26(8):58–93.

    Google Scholar 

  71. Kasper S, Smith JA Jr. Genetically modified mice and their use in developing therapeutic strategies for prostate cancer. J Urol 2004;172(1):12–19.

    PubMed  CAS  Google Scholar 

  72. Gingrich Jr, Barrios RJ, Morton RA, et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res 1996;56(18):4096–4102.

    PubMed  CAS  Google Scholar 

  73. Macleod KF, Jacks T. Insights into cancer from transgenic mouse models. J Pathol 1999;187(1):43–60.

    PubMed  CAS  Google Scholar 

  74. Deng CX, Brodie SG. Knockout mouse models and mammary tumorigenesis. Semin Cancer Biol 2001;11(5):38–94.

    Google Scholar 

  75. Fisher GH, Orsulic S, Holland EC, et al. Development of a flexible and specific gene delivery system from production of murine tumor models. Oncogene 1999;18:5253–5260.

    PubMed  CAS  Google Scholar 

  76. McConville P, Hambardzumyan D, Moody JB, Leopold WR, Kreger AR, Woolliscroft MJ, Rehemtulla A, Ross BD, Holland EC. MRI determination of tumor grade and early response to temozolomide in a genetically engineered mouse model of glioma. Clin Cancer Res 2007, in press.

    Google Scholar 

  77. Orsulic S. An RCAS-tva-based approach to designer mouse models. Mammalian Genome 2002;13:543–547.

    PubMed  Google Scholar 

  78. Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE. Induction of ovarian cancer by defined multiple genetic changes in a mouse model. Cancer Cell 2002;1:53–62.

    PubMed  CAS  Google Scholar 

  79. Contag CH. Bioluminescence imaging of mouse models of human cancer. In: Holland EC, ed. Mouse Models of Human Cancer. Hoboken, NJ: John Wiley & Sons, Inc., 2004:363–373.

    Google Scholar 

  80. Edinger M, Cao YA, Hornig YS, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 2002;38(16):2128–2136.

    PubMed  CAS  Google Scholar 

  81. Choy G, Choyke P, Libutti SK. Current advances in molecular imaging: Noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2003;2(4):303–312.

    PubMed  CAS  Google Scholar 

  82. Choy G, O’Connor S, Diehn FE, et al. Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. Biotechniques 2003;35(5):1022–1026.

    PubMed  CAS  Google Scholar 

  83. Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002;4:235–260.

    PubMed  CAS  Google Scholar 

  84. Jaffer FA, Weissleder R. Molecular imaging in the clinical arena. JAMA 2005;293(7):855–862.

    PubMed  CAS  Google Scholar 

  85. Benaron DA. The future of cancer imaging. Cancer Metastasis Rev 2002;21(1):45–78.

    PubMed  CAS  Google Scholar 

  86. Muruganandham M, Koutcher JA. Magnetic resonance imaging in mouse cancer models. In: Holland EC, ed. Micro-Computed Tomography of Mouse Cancer Models. Hoboken, NJ: John Wiley & Sons, Inc., 2004:349–362.

    Google Scholar 

  87. Pautler RG. Mouse MRI: Concepts and applications in physiology. Physiology (Bethesda) 2004;19:168–175.

    Google Scholar 

  88. Swindle P, McCredie S, Russell P, et al. Pathologic characterization of human prostate tissue with proton MR spectroscopy. Radiology 2003;228(1):144–151.

    PubMed  Google Scholar 

  89. Weichert JP. Micro-computed tomography of mouse cancer models. In: Holland EC, ed. Mouse Models of Human Cancer. Hoboken, NJ: John Wiley & Sons, Inc., 2004:339–348.

    Google Scholar 

  90. Spence AM, Mankoff DA, Muzi M. Positron emission tomography imaging of brain tumors. Neuroimaging Clin North Am 2003;13(4):717–739.

    Google Scholar 

  91. Shields AF, Grierson Jr, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–1336.

    PubMed  CAS  Google Scholar 

  92. Shields AF, Mankoff DA, Link JM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998;39(10):1757–1762.

    PubMed  CAS  Google Scholar 

  93. Jager PL, Que TH, Vaalburg W, Pruim J, Elsinga P, Plukker JT. Carbon-11 choline or FDG-PET for staging of oesophageal cancer? Eur J Nucl Med 2001;28(12):184–189.

    Google Scholar 

  94. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: Basic aspects and clinical applications in oncology. J Nucl Med 2001;42(3):432–445.

    PubMed  CAS  Google Scholar 

  95. Furumoto S, Takashima K, Kubota K, Ido T, Iwata R, Fukuda H. Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nucl Med Biol 2003;30(2):119–125.

    PubMed  CAS  Google Scholar 

  96. Gambhir S, Herschman H, Cherry S, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000;2(1–2):118–138.

    PubMed  CAS  Google Scholar 

  97. Lee FT, Hall C, Rigopoulos A, et al. Immuno-PET of human colon xenograft-bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody. J Nucl Med 2001;42(5):764–769.

    PubMed  CAS  Google Scholar 

  98. Sundaresan G, Yazaki PJ, Shively JE, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44(12):1962–1969.

    PubMed  CAS  Google Scholar 

  99. Rockwell S. Tumor cell survival. In: Teicher B, ed. Tumor Models in Cancer Research. Totowa, NJ: Humana Press, Inc., 2002:617–631.

    Google Scholar 

  100. Dykes DJ, Abbott BJ, Mayo JG, et al. Development of human tumor xenograft models for in vivo evaluation of new antitumor drugs. Contrib Oncol 1992;42:1–22.

    Google Scholar 

  101. Plowman J. Human tumor xenograft models in NCI drug development. In: Teicher B, ed. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval. Totowa, NJ: Humana Press, 1997:10–25.

    Google Scholar 

  102. Coe RA. Quantitative whole-body autoradiography. Regul Toxicol Pharmacol 2000;31(2 Pt 2):S1–3.

    PubMed  CAS  Google Scholar 

  103. Malandain G, Bardinet E, Nelissen K, Vanduffel W. Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. Neuroimage 2004;23(1):111–27.

    PubMed  Google Scholar 

  104. Fischman AJ, Alpert NM, Rubin RH. Pharmacokinetic imaging: A noninvasive method for determining drug distribution and action. Clin Pharmacokinet 2002;41(8):581–602.

    PubMed  CAS  Google Scholar 

  105. Sebolt-Leopold JS, Dudley DT, Herrera R, et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 1999;5(7):810–816.

    PubMed  CAS  Google Scholar 

  106. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003;9(1):327–337.

    PubMed  CAS  Google Scholar 

  107. Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004;3(11):1427–1438.

    PubMed  CAS  Google Scholar 

  108. Ross BD, Chenevert TL, Moffat BA, et al. Use of magnetic resonance imaging for evaluation of treatment response. In: Holland EC, ed. Mouse Models of Human Cancer. Hoboken, NJ: John Wiley & Sons, Inc., 2004:377–390.

    Google Scholar 

  109. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004;10(2):145–147.

    PubMed  CAS  Google Scholar 

  110. Galbraith SM, Maxwell RJ, Lodge MA, et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 2003;21(15):2831–2842.

    PubMed  CAS  Google Scholar 

  111. Galbraith SM. Antivascular cancer treatments: Imaging biomarkers in pharmaceutical drug development. Br J Radiol 2003;76 (Spec No 1):S83–S86.

    PubMed  Google Scholar 

  112. Toyama H, Ichise M, Liow JS, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31(2):251–256.

    PubMed  CAS  Google Scholar 

  113. Taylor JS, Tofts PS, Port R, et al. MR imaging of tumor microcirculation: Promise for the new millennium. J Magn Reson Imaging 1999;10(6):90–97.

    Google Scholar 

  114. Leach MO, Brindle KM, Evelhoch JL, et al. Assessment of antiangiogenic and antivascular therapeutics using MRI: Recommendations for appropriate methodology for clinical trials. Br J Radiol 2003;76 (Spec No 1):S87–S91.

    PubMed  Google Scholar 

  115. Moffat BA, Chenevert TL, Hall DE, Rehemtulla A, Ross BD. Continuous arterial spin labeling using a train of adiabatic inversion pulses. J Magn Reson Imaging 2005;21(3):290–296.

    PubMed  Google Scholar 

  116. Sun Y, Schmidt NO, Schmidt K, et al. Perfusion MRI of U87 brain tumors in a mouse model. Magn Reson Med 2004;51(5):893–899.

    PubMed  Google Scholar 

  117. Moffat BA, Reddy GR, McConville P, et al. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imaging 2003;2(4):324–332.

    PubMed  CAS  Google Scholar 

  118. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: Applications and potential for drug development. J Natl Cancer Inst 2005;97(3):172–187.

    PubMed  CAS  Google Scholar 

  119. Anderson H, Price P. Clinical measurement of blood flow in tumours using positron emission tomography: A review. [Article]. Nucl Med Commun 2002;23(2):131–138.

    PubMed  CAS  Google Scholar 

  120. Laxman B, Hall DE, Bhojani MS, et al. Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 2002;99(26):16551–16555.

    PubMed  CAS  Google Scholar 

  121. Jung HI, Kettunen MI, Davletov B, Brindle KM. Detection of apoptosis using the C2A domain of synaptotagmin I. Bioconjug Chem 2004;15(5):983–987.

    PubMed  CAS  Google Scholar 

  122. Hakumaki JM, Brindle KM. Techniques: Visualizing apoptosis using nuclear magnetic resonance. Trends Pharmacol Sci 2003;24(3):146–149.

    PubMed  CAS  Google Scholar 

  123. Collingridge DR, Glaser M, Osman S, et al. In vitro selectivity, in vivo biodistribution and tumour uptake of annexin V radiolabelled with a positron emitting radioisotope. Br J Cancer 2003;89(7):1327–1333.

    PubMed  CAS  Google Scholar 

  124. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001;7(11):1241–1244.

    PubMed  CAS  Google Scholar 

  125. Phelps ME. Inaugural article: Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000;97(16):9226–9233.

    PubMed  CAS  Google Scholar 

  126. Maxwell RJ, Nielsen FU, Breidahl T, Stodkilde-Jorgensen H, Horsman MR. Effects of combretastatin on murine tumours monitored by 31P MRS, 1H MRS and 1H MRI. Int J Radiat Oncol Biol Phys 1998;42(4):891–894.

    PubMed  CAS  Google Scholar 

  127. Kristensen CA, Askenasy N, Jain RK, Koretsky AP. Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies. Br J Cancer 1999;79(2):278–285.

    PubMed  CAS  Google Scholar 

  128. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92(3):205–216.

    PubMed  CAS  Google Scholar 

  129. Stahl A, Ott K, Schwaiger M, Weber WA. Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET. Eur J Nucl Med Mol Imaging 2004;31(11):1471–1478.

    PubMed  CAS  Google Scholar 

  130. Stahl A, Wieder H, Piert M, Wester HJ, Senekowitsch-Schmidtke R, Schwaiger M. Positron emission tomography as a tool for translational research in oncology. Mol Imaging Biol 2004;6(4):214–224.

    PubMed  Google Scholar 

  131. Stahl A, Wieder H, Wester HJ, et al. PET/CT molecular imaging in abdominal oncology. Abdom Imaging 2004;29(3):388–397.

    PubMed  CAS  Google Scholar 

  132. Xavier AR, Qureshi AI, Kirmani JF, Yahia AM, Bakshi R. Neuroimaging of stroke: A review. South Med J 2003;96(4):367–379.

    PubMed  Google Scholar 

  133. Roberts TP, Rowley HA. Diffusion weighted magnetic resonance imaging in stroke. Eur J Radiol 2003;45(3):185–194.

    PubMed  Google Scholar 

  134. Chenevert Tl, Stegman LD, Taylor JMG, et al. Diffusion magnetic resonance imaging: An early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000;92(24):2029–2036.

    PubMed  CAS  Google Scholar 

  135. Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997;3(9):1457–1466.

    PubMed  CAS  Google Scholar 

  136. Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 2000;43(6):828–836.

    PubMed  CAS  Google Scholar 

  137. Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999;9(1):53–60.

    PubMed  CAS  Google Scholar 

  138. Ross BD, Moffat BA, Lawrence TS, et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol Cancer Ther 2003;2(6):581–587.

    PubMed  CAS  Google Scholar 

  139. Moffat BA, Chenevert TL, Lawrence T, et al. Functional diffusion map: A noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 2005;102(15):5524–5529.

    PubMed  CAS  Google Scholar 

  140. McConville P, Moody JB, Moffat BA. High-throughput magnetic resonance imaging in mice for phenotyping and therapeutic evaluation. Curr Opin Chem Biol 2005;9(4):413–420.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

McConville, P. et al. (2007). Preclinical Models of Tumor Growth and Response. In: Shields, A.F., Price, P. (eds) In Vivo Imaging of Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-341-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-341-7_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-633-7

  • Online ISBN: 978-1-59745-341-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics