Skip to main content

Synthesis of Toll-Like Receptor-2 Targeting Lipopeptides as Self-Adjuvanting Vaccines

  • Protocol

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 494))

Summary

Effective Th1- and Th2-type immune responses that result in protective immunity against pathogens can be induced by self-adjuvanting lipopeptides containing the lipid moiety dipalmitoyl-S-glyceryl cysteine (Pam2Cys). The potent immunogenicity of these lipopeptides is due to their ability to activate dendritic cells by targeting and signaling through Toll-like receptor-2 (TLR-2). In addition, the simplicity and flexibility in their design as well as their ease of chemical definition and characterisation makes them highly attractive vaccine candidates for humans and animals. We describe in this chapter the techniques involved in the synthesis of an immunocontraceptive lipopeptide vaccine as well as the experimental assays carried out to evaluate its efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Deliyannis, G., Jackson, D.C., Ede, N.J., et al. (2002) Induction of long-term memory CD8(+) T cells for recall of viral clearing responses against influenza virus. J. Virol. 76(9), 4212–4221.

    Article  CAS  PubMed  Google Scholar 

  2. Egan, M.A., Chong, S.Y., Hagen, M., et al. (2004) A comparative evaluation of nasal and parenteral vaccine adjuvants to elicit systemic and mucosal HIV-1 peptide-specific humoral immune responses in cynomolgus macaques. Vaccine 22(27–28), 3774–3788.

    Article  CAS  PubMed  Google Scholar 

  3. Halassy, B., Mateljak, S., Bouche, F.B., et al. (2006) Immunogenicity of peptides of measles virus origin and influence of adjuvants. Vaccine 24(2), 185–194.

    Article  CAS  PubMed  Google Scholar 

  4. Jackson, D.C., Lau, Y.F., Le, T., et al. (2004) A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl. Acad. Sci. USA 101(43), 15440–15445.

    Article  CAS  PubMed  Google Scholar 

  5. Olive, C., Clair, T., Yarwood, P., and Good, M.F. (2002) Protection of mice from group A streptococcal infection by intranasal immunisation with a peptide vaccine that contains a conserved M protein B cell epitope and lacks a T cell autoepitope. Vaccine 20(21–22), 2816–2825.

    Article  CAS  PubMed  Google Scholar 

  6. Taouji, S., Nomura, I., Giguere, S., et al. (2004) Immunogenecity of synthetic peptides representing linear B-cell epitopes of VapA of Rhodococcus equi. Vaccine 22(9–10), 1114–1123.

    Article  CAS  PubMed  Google Scholar 

  7. Cassataro, J., Estein, S.M., Pasquevich, K.A., et al. (2005) Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect. Immun. 73(12), 8079–8088.

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Yedidia, T., Tarrab-Hazdai, R., Schechtman, D., and Arnon, R. (1999) Intranasal administration of synthetic recombinant peptide-based vaccine protects mice from infection by Schistosoma mansoni. Infect. Immun. 67(9), 4360–4366.

    CAS  PubMed  Google Scholar 

  9. Lougovskoi, A.A., Okoyeh, N.J., and Chauhan, V.S. (1999) Mice immunised with synthetic peptide from N-terminal conserved region of merozoite surface antigen-2 of human malaria parasite Plasmodium falciparum can control infection induced by Plasmodium yoelii yoelii 265BY strain. Vaccine 18(9–10), 920–930.

    Article  CAS  PubMed  Google Scholar 

  10. Audran, R., Cachat, M., Lurati, F., et al. (2005) Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect. Immun. 73(12), 8017–8026.

    Article  CAS  PubMed  Google Scholar 

  11. Smith, J.W., 2nd, Walker, E.B., Fox, B.A., et al. (2003) Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J. Clin. Oncol. 21(8), 1562–1573.

    Article  CAS  PubMed  Google Scholar 

  12. Valmori, D., Dutoit, V., Ayyoub, M., et al. (2003) Simultaneous CD8+ T cell responses to multiple tumor antigen epitopes in a multipeptide melanoma vaccine. Cancer Immun. 3, 15.

    PubMed  Google Scholar 

  13. Noguchi, M., Itoh, K., Suekane, S., et al. (2004) Phase I trial of patient-oriented vaccination in HLA-A2-positive patients with metastatic hormone-refractory prostate cancer. Cancer Sci. 95(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  14. Chianese-Bullock, K.A., Pressley, J., Garbee, C., et al. (2005) MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J. Immunol. 174(5), 3080–3086.

    CAS  PubMed  Google Scholar 

  15. Ghosh, S. and Jackson, D.C. (1999) Antigenic and immunogenic properties of totally synthetic peptide-based anti-fertility vaccines. Int. Immunol. 11(7), 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  16. Ferro, V.A., Khan, M.A., McAdam, D., et al. (2004) Efficacy of an anti-fertility vaccine based on mammalian gonadotrophin releasing hormone (GnRH-I)—a histological comparison in male animals. Vet. Immunol. Immunopathol. 101(1–2), 73–86.

    Article  CAS  PubMed  Google Scholar 

  17. Zeng, W., Ghosh, S., Macris, M., Pagnon, J., and Jackson, D.C. (2001) Assembly of synthetic peptide vaccines by chemoselective ligation of epitopes: influence of different chemical linkages and epitope orientations on biological activity. Vaccine 19(28–29), 3843–3852.

    Article  CAS  PubMed  Google Scholar 

  18. Jinshu, X., Jingjing, L., Duan, P., et al. (2005) A synthetic gonadotropin-releasing hormone (GnRH) vaccine for control of fertility and hormone dependent diseases without any adjuvant. Vaccine 23(40), 4834–4843.

    Article  PubMed  Google Scholar 

  19. Mesa, C. and Fernandez, L.E. (2004) Challenges facing adjuvants for cancer immunotherapy. Immunol. Cell Biol. 82(6), 644–650.

    Article  CAS  PubMed  Google Scholar 

  20. Pashine, A., Valiante, N.M., and Ulmer, J.B. (2005) Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. 11(4 Suppl), S63–68.

    Article  CAS  PubMed  Google Scholar 

  21. BenMohamed, L., Belkaid, Y., Loing, E., Brahimi, K., Gras-Masse, H., and Druilhe, P. (2002) Systemic immune responses induced by mucosal administration of lipopeptides without adjuvant. Eur. J. Immunol. 32(8), 2274–2281.

    Article  CAS  PubMed  Google Scholar 

  22. Le Gal, F.A., Prevost-Blondel, A., Lengagne, R., et al. (2002) Lipopeptide-based melanoma cancer vaccine induced a strong MART-27–35-cytotoxic T lymphocyte response in a preclinal study. Int. J. Cancer 98(2), 221–227.

    Article  PubMed  Google Scholar 

  23. Chua, B.Y., Healy, A., Cameron, P.U., et al. (2003) Maturation of dendritic cells with lipopeptides that represent vaccine candidates for hepatitis C virus. Immunol. Cell Biol. 81(1), 67–72.

    Article  PubMed  Google Scholar 

  24. Muhlradt, P.F., Kiess, M., Meyer, H., Sussmuth, R., and Jung, G. (1997) Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J. Exp. Med. 185(11), 1951–1958.

    Article  CAS  PubMed  Google Scholar 

  25. Zeng, W., Ghosh, S., Lau, Y.F., Brown, L.E., and Jackson, D.C. (2002) Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines. J. Immunol. 169(9), 4905–4912.

    PubMed  Google Scholar 

  26. Nardin, E.H., Calvo-Calle, J.M., Oliveira, G.A., et al. (1998) Plasmodium falciparum polyoximes: highly immunogenic synthetic vaccines constructed by chemoselective ligation of repeat B-cell epitopes and a universal T-cell epitope of CS protein. Vaccine 16(6), 590–600.

    Article  CAS  PubMed  Google Scholar 

  27. Obert, M., Pleuger, H., Hanagarth, H.G., et al. (1998) Protection of mice against SV40 tumours by Pam3Cys, MTP-PE and Pam3Cys conjugated with the SV40 T antigen-derived peptide, K(698)-T(708). Vaccine 16(2–3), 161–169.

    Article  CAS  PubMed  Google Scholar 

  28. Mora, A.L. and Tam, J.P. (1998) Controlled lipidation and encapsulation of peptides as a useful approach to mucosal immunizations. J. Immunol. 161(7), 3616–3623.

    CAS  PubMed  Google Scholar 

  29. Shimizu, T., Ohtsuka, Y., Yanagihara, Y., Kurimura, M., Takemoto, M., and Achiwa, K. (1991) Comparison of biologic activities of synthetic lipopentapeptide analogs of bacterial lipoprotein in mice. Mol. Biother. 3(1), 46–50.

    CAS  PubMed  Google Scholar 

  30. Delves, P.J., Lund, T., and Roitt, I.M. (2002) Antifertility vaccines. Trends Immunol. 23(4), 213–219.

    Article  CAS  PubMed  Google Scholar 

  31. Oonk, H.B., Turkstra, J.A., Schaaper, W.M., et al. (1998) New GnRH-like peptide construct to optimize efficient immunocastration of male pigs by immunoneutralization of GnRH. Vaccine 16(11–12), 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  32. Ferro, V.A. and Stimson, W.H. (1997) Immunoneutralisation of gonadotrophin releasing hormone: a potential treatment for oestrogen-dependent breast cancer. Eur. J. Cancer 33(9), 1468–1478.

    Article  CAS  PubMed  Google Scholar 

  33. Talwar, G.P. (1999) Vaccines and passive immunological approaches for the control of fertility and hormone-dependent cancers. Immunol. Rev. 171, 173–192.

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh, S., Walker, J., and Jackson, D.C. (2001) Identification of canine helper T-cell epitopes from the fusion protein of canine distemper virus. Immunology 104(1), 58–66.

    Article  CAS  PubMed  Google Scholar 

  35. Wade, J.D., Bedford, J., Sheppard, R.C., and Tregear, G.W. (1991) DBU as an N alpha-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 4(3), 194–199.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chua, B.Y., Zeng, W., Jackson, D.C. (2008). Synthesis of Toll-Like Receptor-2 Targeting Lipopeptides as Self-Adjuvanting Vaccines. In: Otvos, L. (eds) Peptide-Based Drug Design. Methods In Molecular Biology™, vol 494. Humana Press. https://doi.org/10.1007/978-1-59745-419-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-419-3_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-990-1

  • Online ISBN: 978-1-59745-419-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics