Skip to main content

Sedimentation Velocity Analysis of Amyloid Fibrils

  • Protocol
  • First Online:
Protein Folding, Misfolding, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 752))

Abstract

Analytical ultracentrifugation is a classical technique used to study the solution behavior of proteins. Experimentally determined sedimentation coefficients provide information regarding the size, shape, and interactions of biological macromolecules. Sedimentation velocity methods have been used to characterize the different aggregation states of amyloid oligomers and fibrils. This chapter first describes the theoretical background for sedimentation velocity analysis. It then provides experimental protocols for sedimentation velocity experiments using the analytical ultracentrifuge. Finally, this chapter describes the procedure used to analyze sedimentation velocity data to obtain the size distribution of amyloid fibrils and their oligomeric precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sipe, J.D., and Cohen, A.S. (2000) Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98.

    Article  PubMed  CAS  Google Scholar 

  2. MacRaild, C.A., Stewart, C.R., Mok, Y.F., Gunzburg, M.J., Perugini, M.A., Lawrence, L.J., Tirtaatmadja, V., Cooper-White, J.J., and Howlett, G.J. (2004) Non-fibrillar components of amyloid deposits mediate the self-association and tangling of amyloid fibrils. J. Biol. Chem. 279, 21038–21045.

    Article  PubMed  CAS  Google Scholar 

  3. Tennent, G.A., Lovat, L.B., and Pepys, M.B. (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc. Natl. Acad. Sci. U.S.A. 92, 4299–4303.

    Article  PubMed  CAS  Google Scholar 

  4. Hawkins, P.N., and Pepys, M.B. (1995) Imaging amyloidosis with radiolabelled SAP. Eur. J. Nucl. Med. 22, 595–599.

    Article  PubMed  CAS  Google Scholar 

  5. El-Agnaf, O.M., Nagala, S., Patel, B.P., and Austen, B.M. (2001) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J. Mol. Biol. 310, 157–168.

    Article  PubMed  CAS  Google Scholar 

  6. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., and Glabe, C.G. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489.

    Article  PubMed  CAS  Google Scholar 

  7. Reixach, N., Deechongkit, S., Jiang, X., Kelly, J.W., and Buxbaum, J.N. (2004) Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc. Natl. Acad. Sci. U.S.A. 101, 2817–2822.

    Article  PubMed  CAS  Google Scholar 

  8. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M., and Stefani, M. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511.

    Article  PubMed  CAS  Google Scholar 

  9. Conway, K.A., Lee, S.J., Rochet, J.C., Ding, T.T., Williamson, R.E., and Lansbury, P.T., Jr. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. U.S.A. 97, 571–576.

    Article  PubMed  CAS  Google Scholar 

  10. Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., Wals, P., Zhang, C., Finch, C.E., Krafft, G.A., and Klein, W.L. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. U.S.A. 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  11. Caughey, B., and Lansbury, P.T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.

    Article  PubMed  CAS  Google Scholar 

  12. Hammarstrom, P., Jiang, X., Deechongkit, S., and Kelly, J.W. (2001) Anion shielding of electrostatic repulsions in transthyretin modulates stability and amyloidosis: insight into the chaotrope unfolding dichotomy. Biochemistry 40, 11453–11459.

    Article  PubMed  CAS  Google Scholar 

  13. Lashuel, H.A., Lai, Z., and Kelly, J.W. (1998) Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 37, 17851–17864.

    Article  PubMed  CAS  Google Scholar 

  14. Lashuel, H.A., Hartley, D.M., Balakhaneh, D., Aggarwal, A., Teichberg, S., and Callaway, D.J. (2002) New class of inhibitors of amyloid-beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer’s disease. J. Biol. Chem. 277, 42881–42890.

    Google Scholar 

  15. Lashuel, H.A., Petre, B.M., Wall, J., Simon, M., Nowak, R.J., Walz, T., and Lansbury, P.T., Jr. (2002) Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102.

    Article  PubMed  CAS  Google Scholar 

  16. Smith, A.M., Jahn, T.R., Ashcroft, A.E., and Radford, S.E. (2006) Direct observation of oligomeric species formed in the early stages of amyloid fibril formation using electrospray ionisation mass spectrometry. J. Mol. Biol. 364, 9–19.

    Article  PubMed  CAS  Google Scholar 

  17. MacRaild, C.A., Hatters, D.M., Lawrence, L.J., and Howlett, G.J. (2003) Sedimentation velocity analysis of flexible macromolecules: self-association and tangling of amyloid fibrils. Biophys. J. 84, 2562–2569.

    Article  PubMed  CAS  Google Scholar 

  18. Binger, K.J., Pham, C.L., Wilson, L.M., Bailey, M.F., Lawrence, L.J., Schuck, P., and Howlett, G.J. (2008) Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining. J. Mol. Biol. 376, 1116–1129.

    Article  PubMed  CAS  Google Scholar 

  19. Fujita, H. (1962) Mathematical theory of sedimentation analysis (New York: Academic Press).

    Google Scholar 

  20. Holloday, L. (1979) An approximate solution of the Lamm equation. Biophys. Chem. 10, 187–190.

    Article  Google Scholar 

  21. Philo, J.S. (1997) An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys. J. 72, 435–444.

    Article  PubMed  CAS  Google Scholar 

  22. VanHolde, K., and Weischet, W. (1978) Boundary analysis of sedimentation velocity experiments with monodisperse and paucidisperse solutes. Biopolymers 17, 1387–1403.

    Article  CAS  Google Scholar 

  23. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619.

    Article  PubMed  CAS  Google Scholar 

  24. Demeler, B., and Saber, H. (1998) Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation. Biophys. J. 74, 444–454.

    Article  PubMed  CAS  Google Scholar 

  25. Schuck, P. (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys. J. 75, 1503–1512.

    Article  PubMed  CAS  Google Scholar 

  26. Devlin, G.L., Chow, M.K., Howlett, G.J., and Bottomley, S.P. (2002) Acid Denaturation of alpha1-antitrypsin: characterization of a novel mechanism of serpin polymerization. J. Mol. Biol. 324, 859–870.

    Article  PubMed  CAS  Google Scholar 

  27. Schuck, P., and Rossmanith, P. (2000) Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers 54, 328–341.

    Article  PubMed  CAS  Google Scholar 

  28. Stafford, W.F., 3rd (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal. Biochem. 203, 295–301.

    Article  PubMed  CAS  Google Scholar 

  29. Philo, J.S. (2000) A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal. Biochem. 279, 151–163.

    Article  PubMed  CAS  Google Scholar 

  30. Schuck, P., and Demeler, B. (1999) Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. Biophys. J. 76, 2288–2296.

    Article  PubMed  CAS  Google Scholar 

  31. Schuck, P., Perugini, M.A., Gonzales, N.R., Howlett, G.J., and Schubert, D. (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096–1111.

    Article  PubMed  CAS  Google Scholar 

  32. Hatters, D.M., MacRaild, C.A., Daniels, R., Gosal, W.S., Thomson, N.H., Jones, J.A., Davis, J.J., MacPhee, C.E., Dobson, C.M., and Howlett, G.J. (2003) The circularization of amyloid fibrils formed by apolipoprotein C-II. Biophys. J. 85, 3979–3990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J. Howlett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pham, C.L.L., Mok, YF., Howlett, G.J. (2011). Sedimentation Velocity Analysis of Amyloid Fibrils. In: Hill, A., Barnham, K., Bottomley, S., Cappai, R. (eds) Protein Folding, Misfolding, and Disease. Methods in Molecular Biology, vol 752. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-223-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-223-0_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-221-6

  • Online ISBN: 978-1-60327-223-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics