Skip to main content

Transmission Electron Microscopy of Amyloid Fibrils

  • Protocol
  • First Online:
Book cover Protein Folding, Misfolding, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 752))

Abstract

Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldsbury, C., Goldie, K., Pellaud, J., Seelig, J., Frey J., Muller, S.A., Kistler, J., Cooper, G.J.S., Aebi, U. (2000) Amyloid Fibril Formation from Full-Length and Fragments of Amylin. Journal of Structural Biology. 130, 352–362.

    Article  PubMed  CAS  Google Scholar 

  2. Lashuel, H.A., Hartley, D.M., Petre, B.M., Wall, J.S., Simon, M.N., Walz, T., Lansbury Jr, P.T. (2003) Mixtures of Wild-type and a Pathogenic (E22G) Form of Aβ40 In Vitro Accumulate Protofibrils, Including Amyloid Pores. Biochemistry. 332, 795–808.

    CAS  Google Scholar 

  3. Nieva, J., Shafton, A., Altobell III, L.J., Tripuraneni, S., Rogel, J.K., Wentworth, A.D., Lerner, R.A., Wentworth Jr., P.W. (2008) Lipid-derived aldehydes accelerate light chain amyloid and amorphous aggregation. Biochemistry. 47, 7695–7705.

    Article  PubMed  CAS  Google Scholar 

  4. Sorci, M., Grassucci, R.A., Hahn, I., Frank, J., Belfort, G. (2009) Time-dependent insulin oligomer reaction pathway prior to fibril formation: Cooling and seeding. Proteins. 77, 62–73.

    Article  PubMed  CAS  Google Scholar 

  5. Krysmann, M.J., Castelletto, V., Kelarakis, A., Hamley, I.W., Hule, R.A., Pochan, D.J. (2008) Self-Assembly and Hydrogelation of an Amyloid Peptide Fragment. Biochemistry. 47, 4597–4605.

    Article  PubMed  CAS  Google Scholar 

  6. Engel, M.F.M., Khemte’mourian, L., Kleijer, C.C., Meeldijk, H.D., Jacobs, J., Verkleij, A.J., de Kruiff, B., Killan, J.A., Hoppener J.W.H. (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. PNAS. 105, 6033–6038.

    Article  PubMed  CAS  Google Scholar 

  7. Thorn, D.C., Ecroyd, H., Sunde, M., Poon, S., Carver, J.A. (2008) Amyloid Fibril Formation by Bovine Milk αS2-Casein Occurs under Physiological Conditions Yet Is Prevented by It’s Natural Counterpart, αS1-Casein. Biochemistry. 47, 3926–3936.

    Article  PubMed  CAS  Google Scholar 

  8. Nilsson, M.R. (2004) Techniques to study amyloid fibril formation in vitro. Methods. 34, 151–160.

    Article  PubMed  CAS  Google Scholar 

  9. Serpell, L.C., Sunde, M., Fraser, P.E., Luther, P.K., Morris, E.P., Sangren, O., Lundgren, E., Blake, C.C.F. (1995) Examination of the Structure of the Transthyretin Amyloid Fibril by Image Reconstruction from Electron Micrographs. Journal of Molecular Biology. 254, 113–118.

    Article  PubMed  CAS  Google Scholar 

  10. Inoue, S., Kuroiwa, M., Saraiva, M.J., Guimaraes, A., Kisilevsky R. (1998) Ultrastructure of Familial Amyloid Polyneuropathy Amyloid Fibrils: Examination with High-Resolution Electron Microscopy. Journal of Structural Biology. 124, 1–12.

    Article  PubMed  CAS  Google Scholar 

  11. Jimenez, J.L., Nettleton, E.J., Bouchard, M., Robinson, C.V., Dobson, C.M., Saibil, H.R. (2002) The protofilament structure of insulin amyloid fibrils. Proceedings of the National Academy of Sciences. 99, 9196–9201.

    Article  CAS  Google Scholar 

  12. Binger, K.J., Pham, C.L.L., Wilson, L.M., Bailey, M.F., Lawrence, L.J., Schuck P., Howlett, G.J. (2008) Apolipoprotein C-II Amyloid Fibrils Assemble via a Reversible Pathway that Includes Fibril Breaking and Rejoining. Journal of Molecular Biology. 376, 1116–1129.

    Article  PubMed  CAS  Google Scholar 

  13. Gras, S.L., Tickler, A.K., Squires A.M., Devlin, G.L., Horton, M.A., Dobson, C.M., MacPhee, C.E. (2008) Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials. 29, 1553–62.

    Article  PubMed  CAS  Google Scholar 

  14. Goldsbury, C. Kistler, J., Aebi, U., Arvinte, T., Cooper, G.J.S. (1999) Watching Amyloid Fibrils Grow by Time Lapse Atomic Force Microscopy. Journal of Molecular Biology. 285, 33–39.

    Article  PubMed  CAS  Google Scholar 

  15. Hayat, M.A. (ed) (2000) Principles and Techniques of Electron Microscopy (4th Ed) Cambridge University Press, Cambridge, UK.

    Google Scholar 

  16. Cohen-Krausz, S., Saibil, H.R. (2006) Three-dimensional Structural Analysis of Amyloid Fibrils by Electron Microscopy in Protein Reviews (Uversky, V.N., Fink A.L., ed.) Springer, USA, pp. 303–313.

    Google Scholar 

  17. Bremer, A., Henn, C., Engel, A., Baumeister, W., and Aebi, U., Has Negative Staining still a place in biomacromolecular electron microscopy? Ultramicroscopy 46, 85–111, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Taylor, K.A., Glaeser, R.M. (1974) Electron diffraction of frozen, hydrated protein crystals. Science. 186, 1036–7.

    Article  PubMed  CAS  Google Scholar 

  19. Dubochet, J., McDowall, A.W. (1981) Vitrification of pure water for electron microscopy. Journal of Microscopy. 124, RP3-RP4.

    Article  Google Scholar 

  20. Adrian, M., Dubochet, J., Fuller, S.D., Harris, R.J. (1998) Cryo-negative staining. Micron. 29, 145–160.

    Article  PubMed  CAS  Google Scholar 

  21. De Carlo, S., El-Bez, C., Alavarez-Rua, C., Borge, J., Dubochet, J. (2002) Cryo-negative staining reduces electron-beam sensitivity of vitrified biological particles. Journal of Structural Biology. 138, 216–226.

    Article  PubMed  Google Scholar 

  22. Cavalier, A., Spehner, D., Humbel, B.M. (ed.) (2009) Handbook of Cryo-Preparation Methods for Electron Microscopy, CRC Press, Taylor and Francis Group, Boca Raton, FL, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally L. Gras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gras, S.L., Waddington, L.J., Goldie, K.N. (2011). Transmission Electron Microscopy of Amyloid Fibrils. In: Hill, A., Barnham, K., Bottomley, S., Cappai, R. (eds) Protein Folding, Misfolding, and Disease. Methods in Molecular Biology, vol 752. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-223-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-223-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-221-6

  • Online ISBN: 978-1-60327-223-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics