Skip to main content

Neoepitope Antibodies Against MMP-Cleaved and Aggrecanase-Cleaved Aggrecan

  • Protocol
  • First Online:
Matrix Metalloproteinase Protocols

Abstract

Neoepitope antibodies recognize the newly created N or C terminus of protein degradation products but fail to recognize the same sequence of amino acids present in intact or undigested protein. Aggrecan neoepitope antibodies have been pivotal in studies determining the contribution of matrix metalloproteinases (MMPs) and aggrecanases to aggrecanolysis. In particular, an antibody to the A374RGSV N terminus was instrumental in the landmark discovery of the aggrecanases, ADAMTS-4 and ADAMTS-5. Antibodies to neoepitopes at the major MMP cleavage site DIPEN341342FFGVG helped to distinguish MMP-driven aggrecan loss from aggrecanase-driven aggrecan loss and idenepsied a role for MMPs in late-stage disease. More recently, neoepitope antibodies that recognize cleavage sites in the chondroitin sulphate-rich region of aggrecan have been used to show that aggrecanase cleavage proceeds in a defined manner, beginning at the C terminus and proceeding to the signature cleavage at NITEGE373374ARGSV in the interglobular domain. Work with the C-terminal neoepitope antibodies has underscored the need to use a suite of neoepitope antibodies to fully describe aggrecanolysis in vitro. In this chapter, we describe the production of two aggrecan neoepitope antibodies as examples: the monoclonal anti-FFGVG antibody (AF-28) and the polyclonal anti-DIPEN antisera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes, C., Caterson, B., White, R. J., Roughley, P. J., and Mort, J. S. (1992) Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. J Biol Chem 267, 16011–16014.

    PubMed  CAS  Google Scholar 

  2. Fosang, A. J., Last, K., and Maciewicz, R. A. (1996) Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest 98, 2292–2299.

    Article  PubMed  CAS  Google Scholar 

  3. Struglics, A., Larsson, S., and Lohmander,L. S. (2006) Estimation of the identity of proteolytic aggrecan fragments using PAGE migration and Western immunoblot. Osteoarthr Cartil 14, 898–905.

    Article  PubMed  CAS  Google Scholar 

  4. Struglics, A., Larsson, S., Pratta, M. A., Kumar, S., Lark, M. W., and Lohmander, L. S. (2006) Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments. Osteoarthr Cartil 14, 101–113.

    Article  PubMed  CAS  Google Scholar 

  5. Lark, M. W., Bayne, E. K., Flanagan, J., Harper, C. F., Hoerrner, L. A., Hutchinson, N. I., Singer, I. I., Donatelli, S. A., Weidner, J. R., Williams, H. R., Mumford, R. A., and Lohmander, L. S. (1997) Aggrecan degradation in human cartilage. Evidence for both metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 100, 93–106.

    Article  PubMed  CAS  Google Scholar 

  6. Chambers, M. G., Cox, L., Chong, L., Suri, N., Cover, P., Bayliss, M. T., and Mason, R. M. (2001) Matrix metalloproteinases and aggrecanases cleave aggrecan in different zones of normal cartilage but colocalize in the development of osteoarthritic lesions in STR/ort mice. Arthritis Rheum 44, 1455–1465.

    Article  PubMed  CAS  Google Scholar 

  7. van Meurs, J., van Lent, P., Stoop, R., Holthuysen, A., Singer, I., Bayne, E., Mudgett, J., Poole, R., Billinghurst, C., van der Kraan, P., Buma, P., and van den Berg, W. (1999) Cleavage of aggrecan at the Asn341-Phe342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arthritis Rheum 42, 2074–2084.

    Article  PubMed  Google Scholar 

  8. Tortorella, M. D., Pratta, M., Liu, R. Q., Austin, J., Ross, O. H., Abbaszade, I., Burn, T., and Arner, E. (2000) Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem 275, 18566–18573.

    Article  PubMed  CAS  Google Scholar 

  9. Tortorella, M. D., Liu, R. Q., Burn, T., Newton, R. C., and Arner, E. (2002) Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol 21, 499–511.

    Article  PubMed  CAS  Google Scholar 

  10. Sandy, J. D., Thompson, V., Doege, K., and Verscharen, C. (2000) The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1. Biochem J 351, 161–166.

    Article  PubMed  CAS  Google Scholar 

  11. Sandy, J. D. and Verscharen, C. (2001) Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 358, 615–626.

    Article  PubMed  CAS  Google Scholar 

  12. van Meurs, J. B., van Lent, P. L., van de Loo, A. A., Holthuysen, A. E., Bayne, E. K., Singer, I. I., and Van Den Berg, W. B. (1999) Increased vulnerability of postarthritic cartilage to a second arthritic insult: accelerated MMP activity in a flare up of arthritis. Ann Rheum Dis 58, 350–356.

    Article  PubMed  Google Scholar 

  13. van Meurs, J. B., van Lent, P. L., Holthuysen, A. E., Singer, I. I., Bayne, E. K., and Van Den Berg, W. B. (1999) Kinetics of aggrecanase and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum 42, 1128–1139.

    Article  PubMed  Google Scholar 

  14. van Meurs, J. B., van Lent, P. L., Singer, I. I., Bayne, E. K., van de Loo, F. A., and Van Den Berg, W. B. (1998) Interleukin-1 receptor antagonist prevents expression of the metalloproteinase-generated neoepitope VDIPEN in antigen-induced arthritis. Arthritis Rheum 41, 647–656.

    Article  PubMed  Google Scholar 

  15. Fosang, A. J., Neame, P. J., Hardingham, T. E., Murphy, G., and Hamilton, J. A. (1991) Cleavage of cartilage proteoglycan between G1 and G2 domains by stromelysins. J Biol Chem 266, 15579–15582.

    PubMed  CAS  Google Scholar 

  16. Fosang, A. J., Neame, P. J., Last, K., Hardingham, T. E., Murphy, G., and Hamilton, J. A. (1992) The interglobular domain of cartilage aggrecan is cleaved by Pump, gelatinases and cathepsin B. J Biol Chem 267, 19470–19474.

    PubMed  CAS  Google Scholar 

  17. Flannery, C. R., Lark, M. W., and Sandy, J. D. (1992) Idenepsication of a stromelysin cleavage site within the interglobular domain of human aggrecan: evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem 267, 1008–1014.

    PubMed  CAS  Google Scholar 

  18. Fosang, A. J., Last, K., Knäuper, V., Neame, P. J., Murphy, G., Hardingham, T. E., Tschesche, H., and Hamilton, J. A. (1993) Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain. Biochem J 295, 273–276.

    PubMed  CAS  Google Scholar 

  19. Fosang, A. J., Last, K., Knäuper, V., Murphy, G., and Neame, P. J. (1996) Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 380, 17–20.

    Article  PubMed  CAS  Google Scholar 

  20. Fosang, A. J., Last, K., Fujii, Y., Seiki, M., and Okada, Y. (1998) Membrane-type 1 MMP (MMP-14) cleaves at three sites in the aggrecan interglobular domain. FEBS Lett 430, 186–190.

    Article  PubMed  CAS  Google Scholar 

  21. Stracke, J. O., Fosang, A. J., Last, K., Mercuri, F. A., Pendas, A. M., Llano, E., Perrisd, R., Di Cesare, P. E., Murphy, G., and Knauper, V. (2000) Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). FEBS Lett 478, 52–56.

    Article  PubMed  CAS  Google Scholar 

  22. Maehara, H., Suzuki, K., Sasaki, T., Oshita, H., Wada, E., Inoue, T., and Shimizu, K. (2007) G1–G2 aggrecan product that can be generated by M-calpain on truncation at Ala709-Ala710 is present abundantly in human articular cartilage. J Biochem (Tokyo) 141, 469–477.

    Article  CAS  Google Scholar 

  23. Jameson, B. A. and Wolf, H. (1988) The antigenic index: a novel algorithm for predicting antigenic determination. CABIOS 4, 181–186.

    PubMed  CAS  Google Scholar 

  24. Lark, M. W., Williams, H., Hoerrner, L. A., Weidner, J., Ayala, J. M., Harper, C. F., Christen, A., Olszewski, J., Konteatis, Z., Webber, R., and Mumford, R. A. (1995) Quanepsication of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum. Biochem J 307, 245–252.

    PubMed  CAS  Google Scholar 

  25. Sztrolovics, R., Alini, M., Roughley, P. J., and Mort, J. S. (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326, 235–241.

    PubMed  CAS  Google Scholar 

  26. Lark, M. W., Gordy, J. T., Weidner, J. R., Ayala, J., Kimura, J. H., Williams, H. R., Mumford, R. A., Flannery, C. R., Carlson, S. S., Iwata, M., and Sandy, J. D. (1995) Cell-mediated catabolism of aggrecan. Evidence that cleavage at the “aggrecanase” site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J Biol Chem 270, 2550–2556.

    Article  PubMed  CAS  Google Scholar 

  27. Hutton, S., Hayward, J., Maciewicz, R. A., and Bayliss, M. (1996) Age-related and zonal distribution of aggrecanase activity in normal and osteoarthritic human articular cartilage. Trans Orthop Res Soc 21, 150.

    Google Scholar 

  28. Chambers, M. G., Cox, L. J., Chong, L., Maciewicz, R., Bayliss, M. T., and Mason, R. M. (1998) Localisation of neoepitopes for “aggrecanase” and general metalloproteinases in normal and osteoarthritic murine articular cartilage. Trans Orthop Res Soc 23, 436.

    Google Scholar 

  29. Mercuri, F. A., Doege, K. J., Arner, E. C., Pratta, M. A., Last, K., and Fosang, A. J. (1999) Recombinant human aggrecan G1–G2 exhibits native binding properties and substrate specificity for matrix metalloproteinases and aggrecanase. J Biol Chem 274, 32387–32395.

    Article  PubMed  CAS  Google Scholar 

  30. Arner, E. C., Pratta, M. A., Newton, R. C., Trzaskos, J., Magolda, R., and Tortorella, M. D. (1998) Comparison of cleavage efficiency of aggrecanase and stromelysin for the aggrecan core protein. Trans Orthop Res Soc 23, 922.

    Google Scholar 

  31. Hughes, C. E., Caterson, B., Fosang, A. J., Roughley, P. J., and Mort, J. S. (1995) Monoclonal antibodies that specifically recognise neo-epitope sequences generated by “aggrecanase” and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J 305, 799–804.

    PubMed  CAS  Google Scholar 

  32. Fosang, A. J., Last, K., Gardiner, P., Jackson, D. C., and Brown, L. (1995) Development of a cleavage site-specific monoclonal antibody for detecting metalloproteinase-derived aggrecan fragments: detection of fragments in human synovial fluids. Biochem J 310, 337–343.

    PubMed  CAS  Google Scholar 

  33. Billington, C. J., Clark, I. M., and Cawston, T. E. (1998) An aggrecan-degrading activity associated with chondrocyte membranes. Biochem J 336, 207–212.

    PubMed  CAS  Google Scholar 

  34. East, C. J., Stanton, H., Golub, S. B., Rogerson, F. M., and Fosang, A. J. (2007) ADAMTS-5 deficiency does not block aggrecanolysis at preferred cleavage sites in the chondroitin sulphate-rich region of aggrecan. J Biol Chem 282, 8632–8640.

    Article  PubMed  CAS  Google Scholar 

  35. Bernatowicz, M. S. and Matsueda, G. R. (1986) Preparation of peptide–protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent. Anal Biochem 155, 95–102.

    Article  PubMed  CAS  Google Scholar 

  36. Sztrolovics, R., Alini, M., Mort, J. S., and Roughley, P. J. (1997) Analysis of aggrecan degradation in human intervertebral disc utilizing neoepitope-specific antibodies. Trans Orthop Res Soc 22, 147.

    Google Scholar 

  37. Chua, B. Y., Zeng, W., and Jackson, D. C. (2008) Synthesis of Toll-like-2 targeting lipopeptides as self-adjuvanting vaccines. In Harvey, L. O., Jr., (ed.), Peptide-based drug design [methods of molecular medicine series]. Totowa, NJ: Humana Press.

    Google Scholar 

  38. Goding, J. W. (1986) Monoclonal antibodies: principles and practice. Sydney: Academic Press.

    Google Scholar 

  39. Fosang, A. J. and Hardingham, T. E. (1989) Isolation of the N-terminal globular domains from cartilage proteoglycans. Idenepsication of G2 domain and its lack of interaction with hyaluronate and link protein. Biochem J 261, 801–809.

    PubMed  CAS  Google Scholar 

  40. Hughes, C. E., Buttner, F. H., Eidenmuller, B., Caterson, B., and Bartnik, E. (1997) Utilization of a recombinant substrate rAgg1 to study the biochemical properties of aggrecanase in cell culture systems. J Biol Chem 272, 20269–20274.

    Article  PubMed  CAS  Google Scholar 

  41. Ilic, M. Z., East, C. J., Rogerson, F. M., Fosang, A. J., and Handley, C. J. (2007) Distinguishing aggrecan loss from aggrecan proteolysis in ADAMTS-4 and ADAMTS-5 single and double deficient mice. J Biol Chem 282, 37420–37428.

    Article  PubMed  CAS  Google Scholar 

  42. Little, C. B., Meeker, C. T., Hembry, R. M., Sims, N. A., Lawlor, K. E., Golub, S. B., Last, K., and Fosang, A. J. (2005) Matrix metalloproteinases are not essential for aggrecan turnover during normal skeletal growth and development. Mol Cell Biol 25, 3388–3399.

    Article  PubMed  CAS  Google Scholar 

  43. Wade, J. D., Bedford, J., Sheppard, R. C., and Tregear, G. W. (1991) DBU as an N alpha-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept Res 4, 194–199.

    PubMed  CAS  Google Scholar 

  44. Pennington, M. W. and Dunn, B. M. (1994) Methods in molecular biology: peptide synthesis protocols. Totowa, NJ: Humana Press.

    Book  Google Scholar 

  45. Hurn, B. A. and Chantler, S. M. (1980) Production of reagent antibodies. Methods Enzymol 70, 104–142.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The CGGFVDIPEN and CGGNITEGE peptides used for the production of the anti-DIPEN and anti-NITEGE antisera were a generous gift from Drs. Peter Roughley and John Mort, Shriners Hospital, Montreal, Canada. We thank Georgia Deliyannis for the monoclonal antibody work. We acknowledge financial support from the National Health and Medical Research Council (Australia), the Victorian Health Promotion Foundation and the Arthritis Australia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fosang, A.J. et al. (2010). Neoepitope Antibodies Against MMP-Cleaved and Aggrecanase-Cleaved Aggrecan. In: Clark, I. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology, vol 622. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-299-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-299-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-298-8

  • Online ISBN: 978-1-60327-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics